

Mathematics

Advanced GCE **A2 7890 – 2**

Advanced Subsidiary GCE AS 3890 – 2

Mark Schemes for the Units

June 2009

3890-2/7890-2/MS/R/09

mun. my maths cloud com

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

MMN. My Maths Cloud Com

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
4721 Core Mathematics 1	1
4722 Core Mathematics 2	5
4723 Core Mathematics 3	8
4724 Core Mathematics 4	12
4725 Further Pure Mathematics 1	17
4726 Further Pure Mathematics 2	20
4727 Further Pure Mathematics 3	24
4728 Mechanics 1	30
4729 Mechanics 2	33
4730 Mechanics 3	35
4731 Mechanics 4	39
4732 Probability & Statistics 1	45
4733 Probability & Statistics 2	50
4734 Probability & Statistics 3	54
4735 Probability & Statistics 4	57
4736 Decision Mathematics 1	60
4737 Decision Mathematics 2	64
Grade Thresholds	69

4721 Core Mathematics 1

1	(i)	d	D1	5 4
1	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5x^4 - 2x^{-3}$	B1	$5x^4$
		dx	M1	$\int x^{-2}$ before differentiation or kx^{-3} in $\frac{dy}{dx}$ soi
			A1 3	$-2x^{-3}$
	(ii)	$\frac{d^2 y}{dx^2} = 20x^3 + 6x^{-4}$	M1 A1 2 5	Attempt to differentiate their (i) – at least one term correct cao
2		$\frac{\left(8+\sqrt{7}\right)\left(2-\sqrt{7}\right)}{\left(2+\sqrt{7}\right)\left(2-\sqrt{7}\right)}$	M1	Multiply numerator and denominator by conjugate
		$=\frac{9-6\sqrt{7}}{4-7}$	A1 A1	Numerator correct and simplified Denominator correct and simplified
		$= -3 + 2\sqrt{7}$	A1 4 4	cao
3	(i)	3 ⁻²	B1 1	
	(ii)	$\frac{1}{3^{\frac{1}{3}}}$	B1 1	
	()	3		
	(iii)	$3^{10} \times 3^{30}$	M1	3 ³⁰ or 9 ²⁰ soi
		$=3^{40}$	A1 2 4	
4		y = 2x - 4		
		$4x^2 + (2x - 4)^2 = 10$	M1*	Attempt to get an equation in 1 variable only
		$8x^2 - 16x + 16 = 10$		
		$8x^2 - 16x + 6 = 0$	A1	Obtain correct 3 term quadratic (aef)
		$4x^2 - 8x + 3 = 0$		
		(2x-1)(2x-3) = 0	M1dep*	Correct method to solve quadratic of form $ax^2 + bx + c = 0 \ (b \neq 0)$ Correct factorisation oe
		$x = \frac{1}{2}$, $x = \frac{3}{2}$	A1	Both x values correct
		y = -3, y = -1	A1 A1 6	Both y values correct
			6	or one correct pair of values www B1 second correct pair of values B1

5	(i)	$(2x^{2} - 5x - 3)(x + 4)$ $= 2x^{3} + 8x^{2} - 5x^{2} - 20x - 3x - 12$	M1		Attempt to multiply a quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^3 term)
		$=2x^3+3x^2-23x-12$	A1		Expansion with no more than one incorrect
			A1	3	term
	41 0		D 4		
	(ii)	$\begin{vmatrix} 2x^4 + 7x^4 \\ = 9x^4 \end{vmatrix}$	B1		$2x^4$ or $7x^4$ soi www
		$=9x^{+}$	B1	2	$9x^4 \text{ or } 9$
				5	
6	(i)				
			B1		One to one graph only in bottom right hand
					quadrant
			B1	2	Correct graph, passing through origin
	(ii)	Translation Parallel to <i>y</i> -axis, 5 units	B1 B1	2	
		\[\sum_{\nu}\]			
	(iii)	$y = -\sqrt{\frac{x}{2}}$	M1		$\sqrt{2x}$ or $\sqrt{\frac{x}{2}}$ seen
				2 6	cao
<u> </u>					
7	(i)	$\left \left(x - \frac{5}{2} \right)^2 - \left(\frac{5}{2} \right)^2 + \frac{1}{4} \right $	B1		$a = \frac{5}{2}$ $\frac{1}{4} - a^2$
		$=\left(x-\frac{5}{2}\right)^2-6$	M1		$\left \frac{1}{4} - a^2 \right $
		2)	A1	3	cao
	(ii)	$\left(x - \frac{5}{2}\right)^2 - \left(\frac{5}{2}\right)^2 + \frac{1}{4}$ $= \left(x - \frac{5}{2}\right)^2 - 6$ $\left(x - \frac{5}{2}\right)^2 - 6 + y^2 = 0$			
		Centre $\left(\frac{5}{2},0\right)$	B1 B1		Correct x coordinate
		Radius = $\sqrt{6}$		2	Correct y coordinate
		Radius = $\sqrt{6}$		3 6	

8 (i)	-42 < 6 <i>x</i> < -6	M1	2 equations or inequalities both dealing with all 3 terms
	-7 < x < -1	A1 A1 3	-7 and -1 seen oe -7 < x < -1 (or x > -7 and x < -1)
(ii)	$x^2 > 16$	B1	±4 oe seen
(11)	$\begin{vmatrix} x^2 > 16 \\ x > 4 \end{vmatrix}$	B1	x > 4
	or $x < -4$	B1 3	x < -4 not wrapped, not 'and'
		6	
9 (i)	$\sqrt{(^{-}1-4)^2+(9-^{-}3)^2}$	M1	Correct method to find line length using
			Pythagoras' theorem
	=13	A1 2	cao
(ii)	$\left(\frac{4+^{-}1}{2}, \frac{^{-}3+9}{2}\right)$	M1	Correct method to find midpoint
	$\left(\frac{3}{2},3\right)$	A1 2	
(***)	12	B1	
(iii)	Gradient of $AB = -\frac{12}{5}$	БІ	
	$y-3=-\frac{12}{5}(x-1)$	M1	Correct equation for line, any gradient, through (1, 3)
	12x + 5y - 27 = 0	A1	Correct equation in any form with gradient
			simplified
		A1 4 8	12x + 5y - 27 = 0
10 (i)	(3x+7)(3x-1)=0	M1	Correct method to find roots
		A1	Correct factorisation oe
	$x = -\frac{7}{3}, x = \frac{1}{3}$	A1 3	Correct roots
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 18x + 18$	M1 M1	Attempt to differentiate y
	$\begin{vmatrix} ax \\ 18x + 18 = 0 \end{vmatrix}$	1411	Uses $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
	x = -1	A1	dx
	y = -16	A1 ft 4	
(iii)	F 149	D1	D W
(111)	1 3 1	B1 B1	Positive quadratic curve y intercept (0, -7)
		B1 3	Good graph, with correct roots indicated and
	30		minimum point in correct quadrant
	-3/ /3		
	-74		
(iv)		B1 1	
	x > -1	11	

11	(i)	Gradient of normal = $-\frac{2}{3}$	B1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}kx^{\frac{1}{2}}$	M1*	Attempt to differentiate equation of curve $\frac{1}{2}kx^{-\frac{1}{2}}$
		When $x = 4$, $\frac{dy}{dx} = \frac{k}{4}$ $\therefore \frac{k}{4} = \frac{3}{2}$ $k = 6$	M1dep*	Attempt to substitute $x = 4$ into their $\frac{dy}{dx}$ soi Equate their gradient expression to negative
		$\begin{vmatrix} 4 & 2 \\ k = 6 \end{vmatrix}$	A1 6	reciprocal of their gradient of normal cao
	(ii)	<i>P</i> is point (4, 12)	B1 ft	
		<i>Q</i> is point (22, 0)	M1 A1	Correct method to find coordinates of <i>Q</i> Correct <i>x</i> coordinate
		Area of triangle = $\frac{1}{2} \times 12 \times 22$	M1	Must use y coordinate of P and x coordinate of Q
		= 132 sq. units	A1 5	

4722 Core Mathematics 2

- $\cos \theta = \frac{6.4^2 + 7.0^2 11.3^2}{2 \times 6.4 \times 7.0}$ M1 Attempt use of cosine rule (any angle)
 - Obtain one of 115°, 34.2°, 30.9°, 2.01, 0.597, 0.539 = -0.4211**A**1
- $\theta = 115^{\circ} \text{ or } 2.01 \text{ rads}$ **A**1 3 Obtain 115° or 2.01 rads, or better
 - (ii) area = $\frac{1}{2} \times 7 \times 6.4 \times \sin 115$ M1 Attempt triangle area using $(\frac{1}{2})ab\sin C$, or equiv $= 20.3 \text{ cm}^2$
 - **A1** 2 Obtain 20.3 (cao)

= 2750

 $x \log 7 = (x+1)\log 2$

2 (i)
$$a+9d=2(a+3d)$$
 M1* Attempt use of $a+(n-1)d$ or $a+nd$ at least once for u_4 , u_{10} or u_{20} A1 Obtain $a=3d$ (or unsimplified equiv) and $a+19d=44$ Attempt to eliminate one variable from two simultaneous

5

equations in a and d, from u_4 , u_{10} , u_{20} and no others d = 2, a = 6A1 **4** Obtain d = 2, a = 6

(ii)
$$S_{50} = {}^{50}/_2 (2x6 + 49x2)$$
 M1 Attempt S_{50} of AP, using correct formula, with $n = 50$, allow $25(2a + 24d)$

A1 2 Obtain 2750

6

- 3 $\log 7^x = \log 2^{x+1}$ M1 Introduce logarithms throughout, or equiv with base 7 or 2
 - M1 Drop power on at least one side
 - **A**1 Obtain correct linear equation (allow with no brackets)
 - $x(\log 7 \log 2) = \log 2$ M1 **Either** expand bracket and attempt to gather x terms,
 - or deal correctly with algebraic fraction
 - x = 0.553**A1** 5 Obtain x = 0.55, or rounding to this, with no errors seen

5

4 (i)
$$(x^2 - 5)^3 = (x^2)^3 + 3(x^2)^2(-5) + 3(x^2)(-5)^2 + (-5)^3$$
 M1* Attempt expansion, with product of powers of x^2 and ± 5 , at least 3 terms

$$= x^6 - 15x^4 + 75x^2 - 125$$
 M1* Use at least 3

- M1* Use at least 3 of binomial coeffs of 1, 3, 3, 1 A1dep* Obtain at least two correct terms, coeffs simplified
 - **A**1 Obtain fully correct expansion, coeffs simplified

OR

$$(x^2 - 5)^3 = (x^2 - 5)(x^4 - 10x^2 + 25)$$

$$= x^6 - 15x^4 + 75x^2 - 125$$
M2 Attempt full expansion of all 3 brackets
Obtain at least two correct terms

Obtain full correct expansion **A**1

(ii)
$$\int (x^2 - 5)^3 dx = \frac{1}{7}x^7 - 3x^5 + 25x^3 - 125x + c$$
 M1 Attempt integration of terms of form kx^n

- A1√ Obtain at least two correct terms, allow unsimplified coeffs
 - Obtain $\frac{1}{7}x^7 3x^5 + 25x^3 125x$ **A**1
- 4 + c, and no dx or \int sign **B**1

5	(i)	$2x = 30^{\circ}, 150^{\circ}$
		$x = 15^{\circ}, 75^{\circ}$

- Attempt sin⁻¹ 0.5, then divide or multiply by 2 M1
- Obtain 15° (allow $^{\pi}/_{12}$ or 0.262) **A**1
- www.mymathscloud.com **A**1 3 Obtain 75° (not radians), and no extra solutions in range

(ii)
$$2(1-\cos^2 x) = 2 - \sqrt{3}\cos x$$

 $2\cos^2 x - \sqrt{3}\cos x = 0$
 $\cos x (2\cos x - \sqrt{3}) = 0$
 $\cos x = 0, \cos x = \frac{1}{2}\sqrt{3}$

- Use $\sin^2 x = 1 \cos^2 x$ M1
- Obtain $2\cos^2 x \sqrt{3}\cos x = 0$ or equiv (no constant terms) **A**1
- M1 Attempt to solve quadratic in cosx
- **A**1 Obtain 30° (allow $\pi/6$ or 0524), and no extra solns in

range $x = 90^{\circ}$, $x = 30^{\circ}$

- B1 5 Obtain 90° (allow $\pi/2$ or 1.57), from correct quadratic only
 - SR answer only B1 one correct solution
 - B1 second correct solution, and no others

8

6
$$\int (3x^2 + a) dx = x^3 + ax + c$$

 $(-1, 2) \Rightarrow -1 - a + c = 2$

 $(2, 17) \Rightarrow 8 + 2a + c = 17$

Hence $y = x^3 + 2x + 5$

a = 2, c = 5

- M1 Attempt to integrate
- Obtain at least one correct term, allow unsimplified **A**1
- Obtain $x^3 + ax$ **A**1
- M1 Substitute at least one of (-1, 2) or (2, 17) into integration attempt involving a and c
- **A**1 Obtain two correct equations, allow unsimplified
- M1Attempt to eliminate one variable from two equations in a and c
- A₁ Obtain a = 2, c = 5, from correct equations
- 8 State $y = x^3 + 2x + 5$ **A**1

8

7 (i)
$$f(-2) = -16 + 36 - 22 - 8$$

= -10

- M1 Attempt f(-2), or equiv **A**1
 - 2 Obtain -10

(ii)
$$f(\frac{1}{2}) = \frac{1}{4} + \frac{2}{4} + \frac{5}{2} - 8 = 0$$
 AG

- M1 Attempt $f(\frac{1}{2})$ (no other method allowed)
- **A**1 2 Confirm $f(\frac{1}{2}) = 0$, extra line of working required

(iii)
$$f(x) = (2x - 1)(x^2 + 5x + 8)$$

- M1Attempt complete division by (2x-1) or $(x-\frac{1}{2})$ or equiv
- **A**1 Obtain $x^2 + 5x + c$ or $2x^2 + 10x + c$
- 3 State $(2x-1)(x^2+5x+8)$ or $(x-\frac{1}{2})(2x^2+10x+16)$ A1
- (iv) f(x) has one real root $(x = \frac{1}{2})$ because $b^2 - 4ac = 25 - 32 = -7$
- B1√ State 1 root, following their quotient, ignore reason
- hence quadratic has no real roots as -7 < 0,
- 2 Correct calculation, eg discriminant or quadratic formula, following their quotient, or cubic has max at (-2.15, -9.9)

8 (i)
$$\frac{1}{2} \times r^2 \times 1.2 = 60$$

 $r = 10$

(ii)(a) $u_5 = 60 \times 0.6^4$

= 7.78

$$r\theta = 10 \times 1.2 = 12$$

perimeter =
$$10 + 10 + 12 = 32$$
 cm

M1 Attempt
$$(\frac{1}{2}) r^2 \theta = 60$$

A1 Obtain
$$r = 10$$

B1
$$\sqrt{}$$
 State or imply arc length is 1.2 r , following their r

M1 Attempt
$$u_5$$
 using ar^4 , or list terms

(b)
$$S_{10} = \frac{60(1 - 0.6^{10})}{1 - 0.6}$$

B1

2 Obtain 149, or better (allow 149.0 – 149.2 inclusive)

series is convergent or -1 < r < 1 (allow r < 1) or reference

$$S_{\infty} = \frac{60}{1 - 0.6}$$

$$= 150$$

M1 Attempt
$$S_{\infty}$$
 using \underline{a}_{1-a}

A1 **3** Obtain
$$S_{\infty} = 150$$

SR B1 only for 150 with no method shown

11

9 (i)

- В1 Sketch graph showing exponential growth (both quadrants)
- 2 State or imply (0, 4)В1

(ii) $4k^x = 20k^2$

$$k^x = 5k^2$$

$$x = \log_k 5k^2$$

$$x = \log_k 5 + \log_k k^2$$

$$x = 2\log_k k + \log_k 5$$

$$x = 2 + \log_k 5 \qquad AC$$

Equate $4k^x$ to $20k^2$ and take logs (any, or no, base) M1

M1 Use $\log ab = \log a + \log b$

Use $\log a^b = b \log a$ M1

4 Show given answer correctly A₁

 $OR \quad 4k^{x} = 20k^{2}$

$$k^x = 5k^2$$

$$k^{x-2} = 5$$

$$x - 2 = \log_k 5$$

$$x = 2 + \log_k 5$$
 Ac

$$= 2 + \log_k 5$$
 AG

- M1 Attempt to rewrite as single index
- **A**1 Obtain $k^{x-2} = 5$ or equiv eg $4k^{x-2} = 20$
- Take logs (to any base) M1
- Show given answer correctly A₁

(iii) (a) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left(4k^0 + 8k^{\frac{1}{2}} + 4k^1\right)$

- M1 Attempt y-values at x = 0, $\frac{1}{2}$ and 1, and no others
- M1
- 3 Obtain a correct expression, allow unsimplified **A**1

Attempt to use correct trapezium rule, 3 y-values, $h = \frac{1}{2}$

 $\approx 1 + 2k^{\frac{1}{2}} + k$

(b) $1+2k^{\frac{1}{2}}+k=16$

$$\left(k^{\frac{1}{2}} + 1\right)^2 = 16$$

$$k^{\frac{1}{2}} - 3$$

$$k = 9$$

- M1 Equate attempt at area to 16
- Attempt to solve 'disguised' 3 term quadratic M1

3 Obtain k = 9 only **A**1

4723 Core Mathematics 3

- 1 (i) State $y = \sec x$ **B**1
 - State $y = \cot x$ В1 (ii)
- State $v = \sin^{-1} x$ В1 (iii) 3
- 2 Either: State or imply $\int \pi (2x-3)^4 dx$ B1 or unsimplified equiv Obtain integral of form $k(2x-3)^5$ M1 any constant k involving π or not
 - Obtain $\frac{1}{10}(2x-3)^5$ or $\frac{1}{10}\pi(2x-3)^5$ A1

Attempt evaluation using 0 and $\frac{3}{2}$ M1

Obtain $\frac{243}{10}\pi$

- subtraction correct way round
- **A**1 or exact equiv
- Or: State or imply $\int \pi (2x-3)^4 dx$ В1 or unsimplified equiv Expand and obtain integral of order 5 with at least three terms correct
 - Ob'n $\frac{16}{5}x^5 24x^4 + 72x^3 108x^2 + 81x$ A1 with or without π

Attempt evaluation using (0 and) $\frac{3}{2}$

Obtain $\frac{243}{10}\pi$ A1 (5) or exact equiv 5

- Attempt use of identity for $\sec^2 \alpha$ using $\pm \tan^2 \alpha \pm 1$ M1 3 (i) Obtain $1+(m+2)^2-(1+m^2)$ absent brackets implied by subsequent **A**1
 - correct working Obtain 4m + 4 = 16 and hence m = 3A1 3
- Attempt subn in identity for $tan(\alpha + \beta)$ M1 (ii)
 - Obtain $\frac{5+3}{1-15}$ or $\frac{m+2+m}{1-m(m+2)}$ A1√ following their m
 - Obtain $-\frac{4}{7}$ A1 3 or exact equiv 6
- Obtain $\frac{1}{3}e^{3x} + e^x$ 4 (i) В1
 - Substitute to obtain $\frac{1}{3}e^{9a} + e^{3a} \frac{1}{3}e^{3a} e^{a}$ or equiv

Equate definite integral to 100 and

- as far as $e^{9a} = ...$ attempt rearrangement M1 Introduce natural logarithm M1 using correct process
- Obtain $a = \frac{1}{9} \ln(300 + 3e^a 2e^{3a})$ A1 5 AG; necessary detail needed
- (ii) Obtain correct first iterate Β1 allow for 4 dp rounded or truncated Show correct iteration process M1 with at least one more step Obtain at least three correct iterates in all **A**1 allowing recovery after error Obtain 0.6309 4 following at least three correct steps; A1
 - answer required to exactly 4 dp $[0.6 \rightarrow 0.631269 \rightarrow 0.630884 \rightarrow 0.630889]$

Either: Show correct process for comp'n M1 5 (i)

Obtain y = 3(3x + 7) - 2

Obtain $x = -\frac{19}{9}$

correct way round and in terms of x

A1

A1 3 or exact equiv; condone absence of y = 0

Or: Use fg(x) = 0 to obtain $g(x) = \frac{2}{3}$

Attempt solution of $g(x) = \frac{2}{3}$

Obtain $x = -\frac{19}{9}$ A1 (3) or exact equiv; condone absence of y = 0

B1

M1

Attempt formation of one of the equations (ii)

 $3x+7=\frac{x-7}{3}$ or 3x+7=x or $\frac{x-7}{3}=x$ M1 or equiv

A1 or equiv

Obtain $y = -\frac{7}{2}$ A1 $\sqrt{3}$ or equiv; following their value of x

(iii) Attempt solution of modulus equation squaring both sides to obtain 3-term M1

> quadratics or forming linear equation with signs of 3x different on each side

Obtain -12x + 4 = 42x + 49 or

3x - 2 = -3x - 7

A1 or equiv

Obtain $x = -\frac{5}{6}$

or exact equiv; as final answer **A**1

Obtain $y = \frac{9}{2}$

A1 or equiv; and no other pair of answers

10

Obtain derivative $k(37+10y-2y^2)^{-\frac{1}{2}}f(y)$ M1 6 (i)

any constant k; any linear function for f

Obtain $\frac{1}{2}(10-4y)(37+10y-2y^2)^{-\frac{1}{2}}$

A1 2 or equiv

Either: Sub'te y = 3 in expression for $\frac{dx}{dy}$ (ii)

Take reciprocal of expression/value *M1

Obtain –7 for gradient of tangent

M1 dep *M *M

Attempt equation of tangent Obtain y = -7x + 52

A1 5 and no second equation

Or: Sub'te y = 3 in expression for $\frac{dx}{dy}$ M1

Attempt formation of eq'n x = m'y + c

where m' is attempt at $\frac{dx}{dy}$

and without change of sign

Obtain $x - 7 = -\frac{1}{7}(y - 3)$

A1 or equiv

Attempt rearrangement to required form M1

Obtain y = -7x + 52A1

(5) and no second equation

7

M1

7 (i) State R = 10B1 or equiv Attempt to find value of α implied by correct answer or its M1 complement; allow sin/cos muddles Obtain 36.9 or $tan^{-1} \frac{3}{4}$ A1 3 or greater accuracy 36.8699... (ii)(a) Show correct process for finding one angle M1 Obtain (64.16 + 36.87 and hence) 101 **A**1 or greater accuracy 101.027... Show correct process for finding second M1 A1 $\sqrt{4}$ following their value of α ; or greater Obtain (115.84 + 36.87 and hence) 153 accuracy 152.711...; and no other between 0 and 360 signalled by 40 ... - 20 ... **(b)** Recognise link with part **(i)** M1 Use fact that maximum and minimum values of sine are 1 and −1 M1 may be implied; or equiv Obtain 60 A1 10 8 (i) Refer to translation and stretch M1in either order; allow here equiv informal terms such as 'move', ... State translation in x direction by 6 A1 or equiv; now with correct terminology State stretch in *y* direction by 2 A1 3 or equiv; now with correct terminology [SC: if M0 but one transformation completely correct, give B1] (ii) State $2\ln(x-6) = \ln x$ В1 or $2\ln(a-6) = \ln a$ or equiv Show correct use of logarithm property *M1 Attempt solution of 3-term quadratic M1 dep *M Obtain 9 only A1 4 following correct solution of equation -------(iii) Attempt evaluation of form $k(y_0 + 4y_1 + y_2)$ M1 any constant k; maybe with $y_0 = 0$ implied Obtain $\frac{1}{3} \times 1(2 \ln 1 + 8 \ln 2 + 2 \ln 3)$ **A**1 or equiv Obtain 2.58 A1 3 or greater accuracy 2.5808... 10 9 (a) Attempt use of quotient rule *M1 or equiv; allow numerator wrong way round and denominator errors Obtain $\frac{(kx^2 + 1)2kx - (kx^2 - 1)2kx}{(kx^2 + 1)^2}$ **A**1 or equiv; with absent brackets implied by

A1

dep *M

Obtain correct simplified numerator 4kx

State x = 0 or refer to 4kx being linear or

observe that, with $k \neq 0$, only one sol'n

Equate numerator of first derivative to zero M1

subsequent correct working

 $A1\sqrt{5}$ AG or equiv; following numerator of form

k'kx = 0, any constant k'

(b) Attempt use of product rule *M1 Obtain $me^{mx}(x^2 + mx) + e^{mx}(2x + m)$ A1 or equiv

Equate to zero and either factorise with factor e^{mx} or divide through by e^{mx} M1 dep *M

Obtain $mx^2 + (m^2 + 2)x + m = 0$ or equiv

and observe that e^{mx} cannot be zero A1

Attempt use of discriminant M1 using correct $b^2 - 4ac$ with their a, b, c

Simplify to obtain $m^4 + 4$ A1 or equiv Observe that this is positive for all m and

hence two roots A1 7 or equiv; AG

4724 Core Mathematics 4

1 <u>Long Division</u> For leading term $3x^2$ in quotient B1

Suff evid of div process (ax^2 , mult back, attempt sub) M1

 $(Quotient) = 3x^2 - 4x - 5$

(Remainder) = -x + 2 A1

<u>Identity</u> $3x^4 - x^3 - 3x^2 - 14x - 8 = Q(x^2 + x + 2) + R$ *M1

 $Q = ax^2 + bx + c$, R = dx + e & attempt ≥ 3 ops. dep*M1 If a = 3, this $\Rightarrow 1$ operation

a = 3, b = -4, c = -5 A1 dep*M1; $Q = ax^2 + bx + c$

d = -1, e = 2

Inspection Use 'Identity' method; if R = e, check cf(x) correct before awarding 2^{nd} M1

2 <u>Indefinite Integral</u> Attempt to connect $dx \& d\theta$ *M1 Incl $\frac{dx}{d\theta}$ or $\frac{d\theta}{dx}$; not $dx = d\theta$

Reduce to $\int 1 - \tan^2 \theta \left(d\theta \right)$ A1 A0 if $\frac{d\theta}{dx} = \sec^2 \theta$; but allow all following A marks

Use $\tan^2\theta = (1,-1) + (\sec^2\theta, -\sec^2\theta)$ dep*M1

Produce $\int 2 - \sec^2 \theta (d\theta)$ A1

Correct $\sqrt{\text{integration of function of type }} d + e \sec^2 \theta \sqrt{A1}$ including d = 0

EITHER Attempt limits change (allow degrees here) M1 (This is 'limits' aspect; the

OR Attempt integ, re-subst & use original $(\sqrt{3},1)$ integ need not be accurate)

 $\frac{1}{6}\pi - \sqrt{3} + 1$ isw Exact answer required A1

- $\left(1 + \frac{x}{a}\right)^{-2} = 1 + \left(-2\right)\frac{x}{a} + \frac{-2.-3}{2}\left(\frac{x}{a}\right)^2 + \dots$
- Check 3 rd term; accept $\frac{x^2}{a}$ M1

$$=1-\frac{2x}{a}+\dots$$
 or $1+\left(-\frac{2x}{a}\right)$

B1 or $1 - 2xa^{-1}$ (Ind of M1)

... +
$$\frac{3x^2}{a^2}$$
 + ...

... +
$$\frac{3x^2}{a^2}$$
 + ... (or $3(\frac{x}{a})^2$ or $3x^2a^{-2}$)

A1 Accept $\frac{6}{2}$ for 3

$$(a+x)^{-2} = \frac{1}{a^2} \left\{ \text{their expansion of } \left(1 + \frac{x}{a}\right)^{-2} \right\} \text{ mult out } \sqrt{A1 4} \quad \frac{1}{a^2} - \frac{2x}{a^3} + \frac{3x^2}{a^4} \text{ ; accept } \text{eg } a^{-2}$$

- (ii) Mult out (1-x) (their exp) to produce all terms/cfs(x^2)
- M1Ignore other terms

Produce
$$\frac{3}{a^2} + \frac{2}{a} (=0)$$
 or $\frac{3}{a^4} + \frac{2}{a^3} (=0)$ or AEF

- Accept x^2 if in both terms **A**1
- $a = -\frac{3}{2}$ www seen anywhere in (i) or (ii)
- A1 3 Disregard any ref to a = 0

7

- Differentiate as a product, u dv + v du4 (i)
- M1 or as 2 separate products

$$\frac{d}{dx}(\sin 2x) = 2\cos 2x$$
 or $\frac{d}{dx}(\cos 2x) = -2\sin 2x$

B1

$$e^{x}(2\cos 2x + 4\sin 2x) + e^{x}(\sin 2x - 2\cos 2x)$$

A1 terms may be in diff order

Simplify to
$$5 e^x \sin 2x$$
 www

A1 4 Accept $10e^x \sin x \cos x$

(ii) Provided result (i) is of form $k e^x \sin 2x$, $k \cos x$

$$\int e^x \sin 2x \, dx = \frac{1}{k} e^x \left(\sin 2x - 2 \cos 2x \right)$$

В1

$$\left[e^{x}\left(\sin 2x - 2\cos 2x\right)\right]_{0}^{\frac{1}{4}\pi} = e^{\frac{1}{4}\pi} + 2$$

B1

$$\frac{1}{5}\left(e^{\frac{1}{4}\pi}+2\right)$$

B1 3 Exact form to be seen

SR Although 'Hence', award M2 for double integration by parts and solving + A1 for correct answer.

5 (i)
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
 aef used

$$=\frac{4t+3t^2}{2+2t}$$

A1

Attempt to find t from one/both equations

M1 or diff (ii) cartesian eqn \rightarrow M1

State/imply t = -3 is only solution of both equations

A1 subst (3,-9), solve for $\frac{dy}{dx} \rightarrow M1$

Gradient of curve =
$$-\frac{15}{4}$$
 or $\frac{-15}{4}$ or $\frac{15}{-4}$

A1 5 grad of curve =
$$-\frac{15}{4} \rightarrow A1$$

[SR If t = 1 is given as solution & not disqualified, award A0 + $\sqrt{A1}$ for grad = $-\frac{15}{4}$ & $\frac{7}{4}$;

If t = 1 is given/used as only solution, award A0 + $\sqrt{A1}$ for grad = $\frac{1}{4}$]

(ii)
$$\frac{y}{x} = t$$

B1

Substitute into either parametric eqn

M1

Final answer $x^3 = 2xy + y^2$

A2 4

[SR Any correct unsimplified form (involving fractions or common factors) \rightarrow A1]

9

6 (i)
$$4x = A(x-3)^2 + B(x-3)(x-5) + C(x-5)$$

M1

A = 5

A1 'cover-up' rule, award B1

B = -5

A1

C = -6

A1 4 'cover-up' rule, award B1

Cands adopting other alg. manip. may be awarded M1 for a full satis method + 3 @ A1

(ii)
$$\int \frac{A}{x-5} dx = A \ln(5-x)$$
 or $A \ln|5-x|$ or $A \ln|x-5|$

 $\sqrt{B1}$ but $\underline{\text{not}} A \ln(x-5)$

$$\int \frac{B}{x-3} dx = B \ln(3-x) \text{ or } B \ln|3-x| \text{ or } B \ln|x-3| \qquad \forall B1 \qquad \text{but } \underline{\text{not}} \ B \ln(x-3)$$

If candidate is awarded B0,B0, then award SR $\sqrt{B1}$ for $A \ln(x-5)$ and $B \ln(x-3)$

$$\int \frac{C}{(x-3)^2} \, \mathrm{d}x = -\frac{C}{x-3}$$

√B1

$$5 \ln \frac{3}{4} + 5 \ln 2$$
 aef, isw $\sqrt{A \ln \frac{3}{4}} - B \ln 2$ $\sqrt{B1}$

Allow if SR B1 awarded

-3

 $\sqrt{\frac{1}{2}}C$

√B1 **5**

[Mark at earliest correct stage & isw; no ln 1]

Attempt scalar prod $\{\mathbf{u}.(4\mathbf{i} + \mathbf{k}) \text{ or } \mathbf{u}.(4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})\} = 0$ 7 (i) M1 where \mathbf{u} is the given vector

Obtain
$$\frac{12}{13} + c = 0$$
 or $\frac{12}{13} + 3b + 2c = 0$

$$c = -\frac{12}{13}$$

$$b = \frac{4}{13}$$

A1 cao No ft

Evaluate
$$\left(\frac{3}{13}\right)^2 + (\text{their } b)^2 + (\text{their } c)^2$$

Ignore non-mention of $\sqrt{}$ M1

Obtain
$$\frac{9}{169} + \frac{144}{169} + \frac{16}{169} = 1$$
 AG

Ignore non-mention of $\sqrt{}$

(ii) Use $\cos \theta = \frac{x \cdot y}{|x||y|}$

M1

Correct method for finding scalar product

M1

A1 3 From
$$\frac{18}{\sqrt{17}\sqrt{29}}$$

SR If $4\mathbf{i}+\mathbf{k} = (4,1,0)$ in (i) & (ii), mark as scheme but allow final A1 for $31^{\circ}(31.160968)$ or 0.544

9

8 (i) $\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$

B1

 $\frac{d}{dx}(uv) = u \ dv + v \ du \ used on (-7)xy$

M1

 $\frac{d}{dx}(14x^{2} - 7xy + y^{2}) = 28x - 7x\frac{dy}{dx} - 7y + 2y\frac{dy}{dx}$ A1

 $2y \frac{dy}{dx} - 7x \frac{dy}{dx} = 7y - 28x \rightarrow \frac{dy}{dx} = \frac{28x - 7y}{7x - 2y}$ www AG A1 4 As AG, intermed step nec

(v = 3 or 4)Subst x = 1 into eqn curve & solve quadratic eqn in y M1

Subst x = 1 and (one of) their y-value(s) into given $\frac{dy}{dx}$ M1 $\left(\frac{dy}{dx} = 7 \text{ or } 0\right)$

Find eqn of tgt, with their $\frac{dy}{dx}$, going through (1, their y) *M1

using (one of) y value(s)

Produce either y = 7x - 4 or y = 4

A1

Solve simultaneously their two equations

dep*M1 provided they have two

Produce $x = \frac{8}{7}$

A1 6

9 (i) $\frac{20}{k_1}$ (seconds)

B1 1

(ii) $\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k_2 \left(\theta - 20\right)$

- B1 **1**
- (iii) Separate variables or invert each side

M1 Correct eqn or very similar

Correct int of each side (+c)

A1,A1 for each integration

Subst $\theta = 60$ when t = 0 into eqn containing 'c'

M1 or $\theta = 60$ when t = their (i)

 $c \text{ (or } -c) = \ln 40 \text{ or } \frac{1}{k_2} \ln 40 \text{ or } \frac{1}{k_2} \ln 40k_2$

A1 Check carefully their 'c'

Subst their value of c and $\theta = 40$ back into equation

M1 Use scheme on LHS

 $t = \frac{1}{k_2} \ln 2$

A1 Ignore scheme on LHS

Total time = $\frac{1}{k_2} \ln 2$ + their (i)

√A1 8

SR If the negative sign is omitted in part (ii), allow all marks in (iii) with $\ln 2$ replaced by $\ln \frac{1}{2}$.

(seconds)

SR If definite integrals used, allow M1 for eqn where t = 0 and $\theta = 60$ correspond; a second M1 for eqn where t = t and $\theta = 40$ correspond & M1 for correct use of limits. Final answer scores 2.

4725 Further Pure Mathematics 1

1.		B1		State correct value of S_{250} or S_{100}
		M1		Subtract $S_{250} - S_{100}$ (or S_{101} or S_{99})
	984390625 – 25502500 = 958888125	A1	3	Obtain correct exact answer
	2 - 51 - 1 - 21 - 1	3.61	3	
2.	3a+5b=1, a+2b=1	M1 M1		Obtain a pair of simultaneous
	a = -3, b = 2	A1 A1	4	equations Attempt to solve
	u-3, v-2	AIAI	4	Obtain correct answers.
3.	(i) 11 – 29i	B1 B1	2	Correct real and imaginary parts
J.	(1) 11 – 291	DIDI		Correct rear and imaginary parts
	(ii) 1 + 41i	B1 B1	2	Correct real and imaginary parts
		D. D.	4	Correct rear and magniary parts
4.	Either $p + q = -1, pq = -8$	B1		Both values stated or used
	$\frac{p+q}{pq}$	B1		Correct expression seen
	pq			
	7	M1		Use their values in their expression
	$-\frac{7}{8}$	A1	4	Obtain correct answer
		D1	4	1
	Or $\frac{1}{p} + \frac{1}{q} = 8$	B1		Substitute $x = \frac{1}{u}$ and use new
	p + q = 0			quadratic
	p+q=1	B1		Correct value stated
	1 1			
	$-\frac{7}{8}$	M1		Use their values in given expression
	8	A1		Obtain correct answer
	$-1+\sqrt{33}$	M1		Find neets of circum and dustic
	Or $\frac{-1\pm\sqrt{33}}{2}$	M1		Find roots of given quadratic
	2	A1		equation Correct values seen
	7	M1		Use their values in given expression
	$-\frac{7}{8}$	A1		Obtain correct answer
5.	(i) $u^3 = \{(-)(5u+7)\}^2$	M1		Use given substitution and rearrange
-	$\begin{bmatrix} (1) & u & - \{(-)(3u + 1)\} \end{bmatrix}$	A1		Obtain correct expression, or
				equivalent
	3 25, 2 70, 40 0	A 1	,	
	$u^3 - 25u^2 - 70u - 49 = 0$	A1	3	Obtain correct final answer
	(ii)	M1		Use coefficient of <i>u</i> of their cubic or
	(ii)	1411		identity connecting the symmetric
				functions and substitute values from
				given equation
	-70	A1 ft	2	Obtain correct answer
	, ,		5	
	1			

472	5 Mark Sc	heme		State correct answers Circle, centre (3, -3), through <i>O</i> ft for (±3,±3) only	
7/2	, mark oc	ileille		Julie 250 Signs of	30
6.	(i) $3\sqrt{2}, -\frac{\pi}{4} \text{ or } -45^{\circ} \text{ AEF}$	B1 B1	2	State correct answers	JUO'COP
	(ii)(a)	B1B1 B1 ft	3	Circle, centre $(3, -3)$, through O ft for $(\pm 3, \pm 3)$ only	
	(ii)(b)	B1 B1 B1	3	Straight line with +ve slope, through (3, -3) or their centre Half line only starting at centre	
	(iii)	B1ft B1ft B1ft	3 11	Area above horizontal through <i>a</i> , below (ii) (b) Outside circle	
7.	(i)	M1 A1	2	Show that terms cancel in pairs Obtain given answer correctly	
	(ii)	M1 A1	2	Attempt to expand and simplify Obtain given answer correctly	
	(iii)	B1 B1		Correct $\sum r$ stated $\sum 1 = n$	
		M1*		Consider sum of 4 separate terms on RHS	
	$(n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n$	*DM1		Required sum is LHS – 3 terms Correct unsimplified expression	
	$4\sum_{r=1}^{n} r^{3} = n^{2} (n+1)^{2}$	A1	6 10	Obtain given answer correctly	
8.	(i)	B1 B1 B1	3	Find coordinates (0, 0) (3, 1) (2, 1) (5, 2) found Accurate diagram sketched	
	$(ii) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	B1 B1	2	Each column correct	
	(iii) Either (1 2)	B1 M1		Correct inverse for their (ii) stated Post multiply C by inverse of (ii)	
		A1ft		Correct answer found	
	Or	M1		Set up 4 equations for elements from correct matrix multiplication	
		A2ft		All elements correct, -1 each error	
		B1 B1 B1	6 11	Shear, x axis invariant or parallel to x-axis eg image of (1, 1) is (3, 1) SR allow s.f. 2 or shearing angle of correct angle to appropriate axis	

				30/
9.	$\begin{vmatrix} a & 1 & 1 & 1 & 1 & a \end{vmatrix}$	M1		Correct expansion process shown
	(i) $a \begin{vmatrix} a & 1 \\ 1 & 2 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 1 & a \\ 1 & 1 \end{vmatrix}$	A1		Obtain correct unsimplified
				expression
	$2a^{2}-2a$	A1	3	•
				Obtain correct answer
	(ii)	M1		
	a=0 or 1	A1ft		Equate their det to 0
		A1ft	3	Obtain correct answers, ft solving a
				quadratic
				_
	(iii) (a)	B1 B1		Equations consistent, but non unique
				solutions
	(b)	B1		Correct equations seen &
		B1	4	inconsistent, no solutions
			10	
10.	i)	M1		Attempt to find next 2 terms
	$u_2 = 7 \ u_3 = 19$	A1		Obtain correct answers
		A1	3	Show given result correctly
	(ii)	M1		Expression involving a power of 3
	$u_n = 2(3^{n-1}) + 1$	A1	2	Obtain correct answer
	(iii)	B1ft		Verify result true when $n = 1$ or $n = 2$
		M1		Expression for u_{n+1} using recurrence
	$u_{n+1} = 3(2(3^{n-1})+1) - 2$			relation
		A1		Correct unsimplified answer
	$u_{n+1} = 2(3^n) + 1$	A1		Correct answer in correct form
		B1		Statement of induction conclusion
			5	
			10	

4726 Further Pure Mathematics 2

1(i)	Attempt area = $\pm \Sigma(0.3y)$ for at least three <i>y</i> values	M1	May be implied
	Get 1.313(1) or 1.314	A1	Or greater accuracy
(ii)	Attempt ± sum of areas (4 or 5 values) Get 0.518(4)	M1 A1	May be implied Or greater accuracy SC If answers only seen, 1.313(1) or 1.314 B2 0.518(4) B2 -1.313(1) or -1.314 B1 -0.518(4) B1
	Or Attempt answer to part (i)—final rectangle Get 0.518(4)	M1 A1	
(iii)	Decrease width of strips	B1	Use more strips or equivalent
2	Attempt to set up quadratic in x Get $x^2(y-1) - x(2y+1) + (y-1) = 0$ Use $b^2 \ge 4ac$ for real x on their quadratic Clearly solve to AG	M1 A1 M1 A1	Must be quadratic; = 0 may be implied Allow =,>,<, \leq here; may be implied If other (in)equalities used, the step to AG must be clear SC Reasonable attempt to diff. using prod/quot rule M1 Solve correct dy/dx=0 to get $x=-1, y=\frac{1}{4}$ A1 Attempt to justify inequality e.g. graph or to show $d^2y/dx^2>0$ M1 Clearly solve to AG A1
3(i)	Reasonable attempt at chain rule Reasonable attempt at product/quotient rule Correctly get $f'(0) = 1$ Correctly get $f''(0) = 1$	M1 M1 A1 A1	Product in answer Sum of two parts SC Use of $\ln y = \sin x$ follows same scheme
(ii)	Reasonable attempt at Maclaurin with their	M1	In $af(0) + bf'(0)x + cf''(0)x^2$
	values $Get 1 + x + \frac{1}{2}x^2$	A1√	From their f(0), f'(0), f"(0) in a correct Maclaurin; all non-zero terms
4	Attempt to divide out.	M1	Or $A+B/(x-2)+(Cx(+D))/(x^2+4)$; allow $A=1$ and/or $B=1$ quoted
	Get x^3 = $A(x-2)(x^2+4)+B(x^2+4)+(Cx+D)(x-2)$	M1	Allow \sqrt{mark} from their Part Fract; allow $D=0$ but not $C=0$
	State/derive/quote <i>A</i> =1	A 1	
	Use <i>x</i> values and/or equate coeff	M1	To potentially get all their constants

			mm my My
4726	N	lark Scheme	June 20 Party Thy
	Get <i>B</i> =1, <i>C</i> =1, <i>D</i> =-2	A1 A1	June 20. To one other correct from cwo For all correct from cwo
5(i)	Derive/quote $d\theta=2dt/(1+t^2)$ Replace their $\cos\theta$ and their $d\theta$, both in terms of t Clearly get $\int (1-t^2)/(1+t^2) dt$ or equiv Attempt to divide out Clearly get/derive AG	B1 M1 A1 M1 A1	May be implied Not $d\theta = dt$ Accept limits of t quoted here Or use AG to get answer above SC Derive $d\theta = 2\cos^2 \frac{1}{2}\theta dt$ B1 Replace $\cos \theta$ in terms of half-angles and their $d\theta (\neq dt)$ M1 Get $\int 2\cos^2 \frac{1}{2}\theta - 1 dt$ or
(ii)	Integrate to $a \tan^{-1} bt - t$ $Get^{1/2}\pi - 1$	M1 A1	$\int 1 - \frac{1}{2}\cos^{2}\frac{1}{2}\theta \cdot \frac{2}{(1+t^{2})} dt \qquad A1$ Use $\sec^{2}\frac{1}{2}\theta = 1+t^{2}$ M1 Clearly get/derive AG A1
6	Get $k \sinh^{-1}k_1x$ Get $\frac{1}{3} \sinh^{-1}\frac{3}{4}x$ Get $\frac{1}{2} \sinh^{-1}\frac{3}{3}x$ Use limits in their answers Attempt to use correct ln laws to set up solvable equation in a Get $a = 2^{\frac{1}{3}}$. $3^{\frac{1}{2}}$	M1 A1 A1 M1 a M1 A1	For either integral; allow attempt at ln version here Or ln version Or ln version Or equivalent

4726

Mark Scheme

7(i)

June 20. Mathscloud.com **B**1 y-axis asymptote; equation may be implied if clear

B1 Shape

B1 $y=\pm 1$ asymptotes; may be implied if seen as on graph

(ii) Reasonable attempt at product rule, giving two terms

Use correct Newton-Raphson at least once with their f '(x) to produce an x_2

 $Get x_2 = 2.0651$

Get $x_3 = 2.0653$, $x_4 = 2.0653$

M1May be implied

- A1√ One correct at any stage if reasonable **A**1 cao; or greater accuracy which rounds
- (iii) Clearly derive coth $x=\frac{1}{2}x$ B1 AG; allow derivation from AG Two roots only M1

Attempt to find second root e.g. symmetry

 $Get \pm 2.0653$

A1√

M1 M1

A1

M1

± their iteration in part (ii)

(a) Get $\frac{1}{2}$ ($e^{\ln a} + e^{-\ln a}$) Use $e^{\ln a} = a$ and $e^{-\ln a} = \frac{1}{a}$ 8(i) Clearly derive AG

> (b) Reasonable attempt to multiply out their attempts at exponential definitions of cosh and sinh

Correct expansion seen as $e^{(x+y)}$ etc.

Clearly tidy to AG

M1

A1

A1

В1

4 terms in each

(ii) Use x = y and $\cosh 0 = 1$ to get AG

(iii) Attempt to expand and equate coefficients

> Attempt to eliminate R (or a) to set up a solvable equation in a (or R)

M1

M1

 $(13 = R \cosh \ln a = R(a^2 + 1)/2a$ $5 = R \sinh \ln a = R(a^2 - 1)/2a$ SC

If exponential definitions used,

 $8e^{x} + 18e^{-x} = Re^{x}/a + Rae^{-x}$ and

With e^{-(x-y)} seen or implied

Get $a = \frac{3}{2}$ (or R = 12) Replace for a (or R) in relevant equation to

set up solvable equation in R (or a) Get R=12 (or $a = \frac{3}{2}$)

A1 M1

A1

Ignore if $a=^2/_3$ also given

same scheme follows

Quote/derive $(\ln^3/2, 12)$ (iv)

B1√ B1√

On their R and a

Use $\sin\theta . \sin^{n-1}\theta$ and parts 9(i)

M1

Reasonable attempt with 2 parts, one yet to be integrated

cube (4 terms)

Get $5\pi/32$

Get correct expression

integrable form and integrate

Reasonable attempt to integrate $\cos^3 2\theta$ as e.g. $\cos^2 2\theta .\cos 2\theta$

Reasonable attempt to put $\cos^2 2\theta$ into

	Get $\cos \theta \sin^{n-1}\theta + (n-1)\sin^{n-2}\theta \cos^2\theta d\theta$	A1	Signs need to be carefully considered
	$-\cos\theta .\sin^{n-1}\theta + (n-1)\int \sin^{n-2}\theta .\cos^2\theta d\theta$ Replace $\cos^2 = 1 - \sin^2$ Clearly use limits and get AG	M1 A1	
(ii)	(a) Solve for $r=0$ for at least one θ Get $(\theta) = 0$ and π	M1 A1	θ need not be correct Ignore extra answers out of range
		B1	General shape (symmetry stated or approximately seen)
	θ= 0	B1	Tangents at θ =0, π and max r seen
	(b)Correct formula used; correct r Use $6I_6 = 5I_4$, $4I_4 = 3I_2$ Attempt I_0 (or I_2) Replace their values to get I_6 Get $5\pi/32$	M1 M1 M1 M1 A1	May be $\int r^2 d\theta$ with correct limits At least one $(I_0 = \frac{1}{2}\pi)$
	Use symmetry to get $5\pi/32$	A1	May be implied but correct use of limits must be given somewhere in answer
	Or		
	Correct formula used; correct <i>r</i> Reasonable attempt at formula	M1	
	$(2i\sin\theta)^6 = (z - \frac{1}{z})^6$ Attempt to multiply out both sides	M1	
	(7 terms)	M1	
	Get correct expansion	A1	
	Convert to trig. equivalent and integrate their expression	M1	cwo
	Get $5\pi/32$	A1	
	Or		
	Correct formula used; correct <i>r</i> Use double-angle formula and attempt to	M1	
	ouls (4 towns)	N/1	

M1

A1

M1

M1

A1

cwo

4727 Further Pure Mathematics 3

1	$\left(\frac{1}{2}\sqrt{3} + \frac{1}{2}i\right)^{\frac{1}{3}} = \left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right)^{\frac{1}{3}}$	B1	For arg $z = \frac{1}{6}\pi$ seen or implied
	$=\cos\frac{1}{18}\pi + i\sin\frac{1}{18}\pi,$	M1	For dividing arg z by 3
	$\cos \frac{13}{18} \pi + i \sin \frac{13}{18} \pi$,	A1	For any one correct root
	$\cos \frac{25}{18} \pi + i \sin \frac{25}{18} \pi$	A1 4	For 2 other roots and no more in range 0 ,, $\theta < 2\pi$
	10 10	4	
2 (i)	$\frac{1}{5}e^{-\frac{1}{3}\pi i}$	B1 1	For stating correct inverse in the form $re^{i\theta}$
(ii)	$r_1 e^{i\theta} \times r_2 e^{i\phi} = r_1 r_2 e^{i(\theta + \phi)}$	M1 A1 2	For stating 2 distinct elements multiplied For showing product of correct form
(iii)	$Z^2 = e^{2i\gamma}$	B1	For $e^{2i\gamma}$ seen or implied
	$\Rightarrow e^{2i\gamma-2\pi i}$	B1 2	For correct answer. aef
		5	
3 (i)	$[6-4\lambda, -7+8\lambda, -10+7\lambda]$ on p	B1	For point on <i>l</i> seen or implied
	$\Rightarrow 3(6-4\lambda) - 4(-7+8\lambda) - 2(-10+7\lambda) = 8$	M1	For substituting into equation of <i>p</i>
	$\Rightarrow \lambda = 1 \Rightarrow (2, 1, -3)$	A1 3	For correct point. Allow position vector
(ii)	METHOD 1		_ , , , , , , , , , , , , , , , , , , ,
	$\mathbf{n} = [-4, 8, 7] \times [3, -4, -2]$	M1* M1	For direction of l and normal of p seen For attempting to find $\mathbf{n}_1 \times \mathbf{n}_2$
	$\mathbf{n} = k[12, 13, -8]$	(*dep) A1	For correct vector
	(2,1,-3) OR $(6,-7,-10)$	M1	For finding scalar product of their point on l with their attempt at \mathbf{n} , or equivalent
	$\Rightarrow 12x + 13y - 8z = 61$	A1 5	For correct equation, aef cartesian
	METHOD 2		
	$\mathbf{r} = [2, 1, -3] OR [6, -7, -10]$	M1	For stating eqtn of plane in parametric form (may be
	$+\lambda[-4, 8, 7] + \mu[3, -4, -2]$	A1√	implied by next stage), using $[2, 1, -3]$ (ft from
	2 42 . 2		(i) Or $[6, -7, -10]$, \mathbf{n}_1 and \mathbf{n}_2 (as above)
	$x = 2 - 4\lambda + 3\mu$ $y = 1 + 8\lambda - 4\mu$	M1	For writing as 3 linear equations
	$z = -3 + 7\lambda - 2\mu$	M1	For attempting to eliminate λ and μ
	$\Rightarrow 12x + 13y - 8z = 61$	A1	For correct equation aef cartesian
	METHOD 3		
	$3(6+3\mu)-4(-7-4\mu)-2(-10-2\mu)=8$	M1	For finding foot of perpendicular from point on l to
	$\Rightarrow \mu = -2 \Rightarrow (0, 1, -6)$	A 1	For correct point or position vector
	From 3 points $(2,1,-3)$, $(6,-7,-10)$, $(0,-10)$, $(0,-10)$	1, – 6),	
	\mathbf{n} = vector product of 2 of [2, 0, 3], [6, -8, -4], [-4, 8, 7]	M1	Use vector product of 2 vectors in plane
	$\Rightarrow \mathbf{n} = k[12, 13, -8]$		
	(2,1,-3) OR $(6,-7,-10)$	M1	For finding scalar product of their point on l with their attempt at \mathbf{n} , or equivalent
	$\Rightarrow 12x + 13y - 8z = 61$	A1	For correct equation aef cartesian
		8	

4 (i)	IF $e^{\int \frac{1}{1-x^2} dx} = e^{\frac{1}{2} \ln \frac{1+x}{1-x}} = \left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}$	M1 A1 2	For IF stated or implied. Allow $\pm \int$ and omission of dx For integration and simplification to AG (intermediate step must be seen)
(ii)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(y \left(\frac{1+x}{1-x} \right)^{\frac{1}{2}} \right) = \left(1+x \right)^{\frac{1}{2}}$	M1*	For multiplying both sides by IF
	$(1+x)^{\frac{1}{2}}$ 24 $x^{\frac{3}{2}}$	M1	For integrating RHS to $k(1+x)^n$
	$y\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}} = \frac{2}{3}(1+x)^{\frac{3}{2}} + c$	A1	For correct equation (including $+ c$)
	$(0,2) \Rightarrow 2 = \frac{2}{3} + c \Rightarrow c = \frac{4}{3}$	M1 (*dep) M1 (*dep)	In either order: For substituting $(0, 2)$ into their GS (including $+c$) For dividing solution through by IF, including dividing c or their numerical value for c
	$y = \frac{2}{3}(1+x)(1-x)^{\frac{1}{2}} + \frac{4}{3}\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}}$	A1 6	For correct solution aef (even unsimplified) in form $y = f(x)$
		8	
5 (i)	$m^2 - 6m + 9 (= 0) \Rightarrow m = 3$	M1 A1	For attempting to solve correct auxiliary equation For correct <i>m</i>
	$CF = (A + Bx) e^{3x}$	A1 3	For correct CF
(ii)	ke^{3x} and kxe^{3x} both appear in CF	B1 1	For correct statement
(iii)	$y = kx^2 e^{3x} \implies y' = 2kx e^{3x} + 3kx^2 e^{3x}$	M1	For differentiating kx^2e^{3x} twice
	$y = kx 0 \Rightarrow y 2kx 0 0$	A1	For correct y' aef
	$\Rightarrow y'' = 2ke^{3x} + 12kxe^{3x} + 9kx^2e^{3x}$	A1	For correct y'' aef
	$\Rightarrow ke^{3x} \left(2 + 12x + 9x^2 - 12x - 18x^2 + 9x^2 \right) = e^{3x}$	M1	For substituting y'' , y' , y into DE
	$\Rightarrow k = \frac{1}{2}$	A1 5	For correct k
		9	

			0
6 (i)	METHOD 1		
	$\mathbf{n}_1 = [1, 1, 0] \times [1, -5, -2]$	M1	For attempting to find vector product of the pair of direction vectors
	= [-2, 2, -6] = k[1, -1, 3]	A1	For correct \mathbf{n}_1
	Use (2, 2, 1)	M1	For substituting a point into equation
	\Rightarrow r. [-2, 2, -6] = -6 \Rightarrow r. [1, -1, 3] = 3	A1 4	For correct equation. aef in this form
	METHOD 2		
	$x = 2 + \lambda + \mu$	M1	For writing as 3 linear equations
	$y = 2 + \lambda - 5\mu$ $z = 1 - 2\mu$	M1	For attempting to eliminate λ and μ
	$\Rightarrow x - y + 3z = 3$	A1	For correct cartesian equation
	\Rightarrow r .[1, -1, 3] = 3	A1	For correct equation. aef in this form
(ii)	For $\mathbf{r} = \mathbf{a} + t\mathbf{b}$		
	METHOD 1	2.54	
	$\mathbf{b} = [1, -1, 3] \times [7, 17, -3]$	M1	For attempting to find $\mathbf{n}_1 \times \mathbf{n}_2$
	= k[2, -1, -1]	A1√	For a correct vector. ft from \mathbf{n}_1 in (i)
	e.g. $x, y \text{ or } z = 0 \text{ in } \begin{cases} x - y + 3z = 3 \\ 7x + 17y - 3z = 21 \end{cases}$	M1	For attempting to find a point on the line
	\Rightarrow a = $\left[0, \frac{3}{2}, \frac{3}{2}\right]$ OR $\left[3, 0, 0\right]$ OR $\left[1, 1, 1\right]$	A1√	For a correct vector. ft from equation in (i) SR a correct vector may be stated without working
	Line is (e.g.) $\mathbf{r} = [1, 1, 1] + t[2, -1, -1]$	A1√ 5	For stating equation of line ft from a and b SR for a = [2, 2, 1] stated award M0
	METHOD 2		
	Solve $\begin{cases} x - y + 3z = 3 \\ 7x + 17y - 3z = 21 \end{cases}$		In either order:
	(M1	For attempting to solve equations
	by eliminating one variable (e.g. z)		
	Use parameter for another variable (e.g. x) to find other variables in terms of t	M1	For attempting to find parametric solution
	(eg) $y = \frac{3}{2} - \frac{1}{2}t$, $z = \frac{3}{2} - \frac{1}{2}t$	A1	For correct expression for one variable
	(es) $y = 2$ 2^{t} , $z = 2$ 2^{t}	A1	For correct expression for the other variable
			ft from equation in (i) for both
	Line is (eg) $\mathbf{r} = \left[0, \frac{3}{2}, \frac{3}{2}\right] + t[2, -1, -1]$	A1√	For stating equation of line. ft from parametric solutions
	METHOD 3		
	eg x, y or $z = 0$ in $\begin{cases} x - y + 3z = 3 \\ 7x + 17y - 3z = 21 \end{cases}$	M1	For attempting to find a point on the line
	$\Rightarrow \mathbf{a} = \left[0, \frac{3}{2}, \frac{3}{2}\right] OR \left[3, 0, 0\right] OR \left[1, 1, 1\right]$	A 1√	For a correct vector. ft from equation in (i) SR a correct vector may be stated without working SR for a = [2, 2, 1] stated award M0
	eg [3, 0, 0] -[1, 1, 1]	M1	For finding another point on the line and using it with the one already found to find b
	$\mathbf{b} = k[2, -1, -1]$	A1	For a correct vector. ft from equation in (i)
	Line is (eg) $\mathbf{r} = [1, 1, 1] + t[2, -1, -1]$	A1√	For stating equation of line. ft from a and b

				, SC
6 (ii) contd	METHOD 4			
	A point on Π_1 is	M1		For using parametric form for Π_1
	$[2+\lambda+\mu,2+\lambda-5\mu,1-2\mu]$	1411		and substituting into Π_2
	On $\Pi_2 \Rightarrow$			
	$[2+\lambda+\mu, 2+\lambda-5\mu, 1-2\mu] \cdot [7, 17, -3] = 21$	A1		For correct unsimplified equation
	$\Rightarrow \lambda - 3\mu = -1$	A1		For correct equation
	Line is (e.g.) $\mathbf{r} = [2, 2, 1] + (3\mu - 1)[1, 1, 0] + \mu[1, -5, -2]$	M1		For substituting into Π_1 for λ or μ
	$\Rightarrow \mathbf{r} = [1, 1, 1] \text{ or } \left[\frac{7}{3}, \frac{1}{3}, \frac{1}{3}\right] + t[2, -1, -1]$	A 1		For stating equation of line
		9		
7 (i)	$\cos 3\theta + i\sin 3\theta = c^3 + 3ic^2s - 3cs^2 - is^3$	M1		For using de Moivre with $n = 3$
	$\Rightarrow \cos 3\theta = c^3 - 3cs^2$ and	A1		For both expressions in this form (seen or implied)
	$\sin 3\theta = 3c^2s - s^3$			SR For expressions found without de Moivre M0 A0
	$\Rightarrow \tan 3\theta = \frac{3c^2s - s^3}{c^3 - 3cs^2}$	M1		For expressing $\frac{\sin 3\theta}{\cos 3\theta}$ in terms of c and s
	$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta} = \frac{\tan\theta (3 - \tan^2\theta)}{1 - 3\tan^2\theta}$	A1	4	For simplifying to AG
(ii) (a)	$\theta = \frac{1}{12}\pi \Rightarrow \tan 3\theta = 1$			
	$\Rightarrow 1 - 3t^2 = t(3 - t^2) \Rightarrow$	В1	1	For both stages correct AG
	$ \Rightarrow 1 - 3t = t(3 - t) \Rightarrow t^3 - 3t^2 - 3t + 1 = 0 $	DI	1	Tor both stages correct AG
(b)	$t - 3t - 3t + 1 = 0$ $(t+1)(t^2 - 4t + 1) = 0$	N/1		For attempt to featuring audio
(2)	$(t+1)(t^2-4t+1)=0$	M1 A1		For attempt to factorise cubic For correct factors
	$\Rightarrow (t=-1), \ t=2\pm\sqrt{3}$	A1		For correct roots of quadratic
	sign for smaller root ⇒	A 1	4	For choice of – sign and correct root AG
	$\tan\frac{1}{12}\pi = 2 - \sqrt{3}$			-
(iii)	$dt = (1 + t^2) d\theta$	 В1		For differentiation of substitution
	$dt = (1 + t^{-}) d\theta$	D .		and use of $\sec^2 \theta = 1 + \tan^2 \theta$
	$\Rightarrow \int_0^{\frac{1}{12}\pi} \tan 3\theta \ d\theta$	B1		For integral with correct θ limits seen
	$= \left[\frac{1}{3}\ln\left(\sec 3\theta\right)\right]_0^{\frac{1}{12}\pi} = \frac{1}{3}\ln\left(\sec \frac{1}{4}\pi\right)$	M1		For integrating to $k \ln(\sec 3\theta)$ OR $k \ln(\cos 3\theta)$
	$= \frac{1}{3} \ln \sqrt{2} = \frac{1}{6} \ln 2$	M1		For substituting limits and $\sec \frac{1}{4}\pi = \sqrt{2}$ OR $\cos \frac{1}{4}\pi = \frac{1}{\sqrt{2}}$ seen
		A 1	5	For correct answer aef
		1	4	

8 (i)	$a^2 = (ap)^2 = apap \implies a = pap$	B1		For use of given properties to obtain AG
	$p^2 = (ap)^2 = apap \implies p = apa$	B1	2	For use of given properties to obtain AG SR allow working from AG to obtain relevant properties
(ii)	$(p^2)^2 = p^4 = e \Rightarrow \text{order } p^2 = 2$	B1		For correct order with no incorrect working seen
	$\left(a^2\right)^2 = \left(p^2\right)^2 = e \implies \text{order } a = 4$	B1		For correct order with no incorrect working seen
	$(ap)^4 = a^4 = e \implies \text{order } ap = 4$	B1		For correct order with no incorrect working seen
	$\left(ap^{2}\right)^{2} = ap^{2}ap^{2} = ap \cdot a \cdot p = a^{2}$	M1		For relevant use of (i) or given properties
	$OR \ ap^2 = a \cdot a^2 = a^3 \Rightarrow$ $\left(ap^2\right)^2 = a^6 = a^2$	A1	5	For correct order with no incorrect working seen
	\Rightarrow order $ap^2 = 4$			
(iii)	METHOD 1 $p^2 = a^2, \ ap^2 = a^3$	M2		For use of the given properties to simplify p^2 and $a p^2$
	$\Rightarrow \{e, a, p^2, ap^2\} = \{e, a, a^2, a^3\}$	A1		For obtaining a^2 and a^3
	which is a cyclic group	A1	4	For justifying that the set is a group
	METHOD 2 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1		For attempting closure with all 9 non-trivial products seen For all 16 products correct
	Completed table is a cyclic group	B2		For justifying that the set is a group
	METHOD 3 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1		For attempting closure with all 9 non-trivial products seen For all 16 products correct
	Identity = e Inverses exist since	B1		For stating identity
	EITHER: e is in each row/column OR: p^2 is self-inverse; a , ap^2 form an	B1		For justifying inverses ($e^{-1} = e$ may be assumed)
	inverse pair			

(iv)	METHOD 1	M1	For attempting to find a non-commutative pair of
	e.g. $a \cdot ap = a^2 p = p^3$ \Rightarrow not commutative	M1 B1 A1 4	elements, at least one involving <i>a</i> (may be embedded in a full or partial table) For simplifying elements both ways round For a correct pair of non-commutative elements For stating <i>Q</i> non-commutative, with a clear
	METHOD 2		argument
	METHOD 2 Assume commutativity, so (eg) $ap = pa$	M1	For setting up proof by contradiction
	(i) \Rightarrow $p = ap . a \Rightarrow p = pa . a = pa^2 = pp^2 = p^3$	M1	For using (i) and/or given properties
	But p and p^3 are distinct	B1	For obtaining and stating a contradiction
	$\Rightarrow Q$ is non-commutative	A1	For stating Q non-commutative, with a clear argument
		15	

4728 Mechanics 1

1 i	$x^{2} + (3x)^{2} = 6^{2}$ $10x^{2} = 36$ $x = 1.9(0) (1.8973)$	M1 A1 A1 [3]	Using Pythagoras, 2 squared terms May be implied Not surd form unless rationalised $(3\sqrt{10})/5$, $(6\sqrt{10})/10$
ii	$\tan \theta = 3x/x \ (= 3 \times 1.9/1.9) = 3$ $\theta = 71.6^{\circ} \qquad (71.565)$	M1 A2 [3]	Must target correct angle. Accept $\sin \theta = 3 \times 1.9/6$ or $\cos \theta = 1.9/6$ which give $\theta = 71.8^{\circ}$, $\theta = 71.5^{\circ}$ respectively, A1. SR $\theta = 71.6^{\circ}$ from $\tan \theta = 3x/x$ if x is incorrect; x used A1, no evidence of x used A2
2 i		B1 B1 [2]	Inverted V shape with straight lines. Starts at origin, ends on <i>t</i> -axis, or horizontal axis if no labelling evident
ii	$6 = 3v/2$ $v = 4 \text{ ms}^{-1}$	M1 A1 A1 [3]	Not awarded if special (right angled, isosceles) triangle assumed, or $s = (u+v)t/2$, or max v at specific t .
iii	T accn = $4/2.4$ or s accn = $16/(2x2.4)$ T accn = $12/3$ s or s accn = $10/3$ Deceleration = $4/(3 - 12/3)$ or $16/2(6-10/3)$ Deceleration = 3 ms^2	M1* A1 D*M1 A1 [4]	Uses $t = v/a$ or $s = v^2/2a$. May be implied Accept $4/(3 - 1.67)$ or $16/2(6-3.33)$ Accept 3.01; award however $v = 4$ obtained in (ii). $a = -3$ gets A0.
3 i	0.8gsin30 0.8x0.2 0.8×9.8sin30 - $T = 0.8x0.2$ T = 3.76 N AG	B1 B1 M1 A1 [4]	Not for 3.92 stated without justification Or 0.16 Uses N2L // to slope, 3 non-zero terms, inc ma Not awarded if initial B1 withheld.
ii	$3.76 - F = 3 \times 0.2$ $F = 3.16$ $3.16 = \mu \times 3 \times 9.8$ $\mu = 0.107 (0.10748)$	M1 A1 A1 M1 A1 [5]	Uses N2L, B alone, 3 non-zero terms Needs <i>correct value</i> of T . May be implied. Uses $F = \mu R$ (Accept with $R = 3$, but not with $R = 0.8g(\cos 30)$, $F = 0.6$, $F = 3.76$, $F = f(\max P)$) Not 0.11, 0.108 (unless it comes from using $g = 9.81$ consistently through question.

4 i	$v^2 = 7^2 - 2 \times 9.8 \times 2.1$ $v = 2.8 \text{ ms}^{-1}$	M1 A1 A1 [3]	Uses $v^2 = u^2 - 2gs$. Accept $7^2 = u^2 + 2gs$
ii	v = 0 $0^2 = 7^2 - 2 \times 9.8s$ s = 2.5 m	B1 M1 A1 [3]	Velocity = 0 at greatest height Uses $0 = u^2 - 2gs$. Accept $7^2 = 2 \times 9.8s$.
iii	v = -5.7 (or $t = 0.71$ oef to reach greatest height) -5.7 = 7 - 9.8t or $5.7 = (0+) 9.8Tt = 1.3(0)$ s (1.2959)	B1 M1 A1 [3]	Allows for change of direction Uses $v = u + \text{or } - \text{g}t$. Not 1.29 unless obtained from g=9.81 consistently
5 i	$0.5 \times 6 = 0.5v + m(v+1)$ $3 = 0.5v + mv + m$ $v(m+0.5) = -m+3$ AG	M1 A1 A1 [3]	Uses CoLM. Includes g throughout MR-1
ii	Momentum before = +/- $(4m - 0.5 \times 2)$ +/- $(4m - 0.5 \times 2) = mv + 0.5(v+1)$ $4m - 0.5 \times 2 = mv + 0.5(v+1)$ v(m+0.5) = 4m - 1.5	B1 M1 A1 A1 [4]	Includes g throughout MR-1 Needs opposite directions in CoLM on "before" side only. RHS in format am + b or b + am. Ignore values for a and b if quoted.
iii	$4m - 1.5 = -m + 3$ $5m = 4.5$ $m = 0.9 \text{ kg}$ $0.9 + v(0.9+0.5) = 3 \text{ or } 4 \times 0.9 - 1.5 = v(0.9+0.5)$ $v = (3-0.9)/(0.9+0.5) = 2.1/1.4$ $v = 1.5 \text{ ms}^{-1}$	M1 A1 M1 A1 [4]	Attempts to obtain eqn in 1 variable from answers in (i) and (ii) Ignore $m = -0.5$ if seen Substitutes for $m=0.9$ in any m , v equation obtained earlier.
6 ia	Perp = 10cos20 (= 9.3967 or 9.4) // = 10sin20 (= 3.4202)	B1 B1 [2]	Includes g, MR -1 in part (i). Accept –ve values.
ь	$\mu = 10\sin 20/10\cos 20 = \tan 20 \ (= 3.42/9.4)$ $\mu = 0.364 (0.36397)$ AG	M1 A1 [2]	Must use $ F = \mu R $ Accept after inclusion of g twice
ii	No misread, and resolving of 10 and T required $R = 10\cos 20 + T\cos 45$ $F = T\cos 45 - 10\sin 20$ or $T\cos 45 = \mu R + 10\sin 20$ $T\cos 45 - 3.42 = 0.364(9.4 + T\cos 45)$ 0.707T - 3.42 = 3.42 + 0.257T 0.45T = 6.84 T = 15.2 N (15.209)	M1* A1 M1* A1 D*M1 A1 A1 [7]	3 term equation perp plane, 2 unknowns $9.4 + 0.707T$ (accept $9.4 + .71T$) 3 term equation // plane, 2 unknowns $0.707T - 3.42$ (accept $0.71T - 3.4$) Substitutes for F and R in $F = 0.364R$ Award final A1 only for $T = 149$ N after using $10g$ for weight

Mark Scheme

4728	Mark S	cheme	June 20. Differentiation attempt. Answer 6-t implies division by t
7 i	$a = \frac{dv}{dt}$ $a = 6 - 2t \text{ ms}^{-2}$	M1 A1 [2]	Differentiation attempt. Answer 6- <i>t</i> implies division by <i>t</i>
ii	$s = \int vdt$ $s = \int 6t - t^{2} dt$ $s = 3 t^{2} - t^{3}/3 (+c)$ $t = 0, v = 0, c = 0$ $t = 3, s = 3x3^{2} - 3^{3}/3$ $s = 18 m$ AG	M1* A1 B1 D*M1 A1 [5]	Award if limits 0,3 used Requires earlier integration Does not require B1 to be earned.
iii	Distance remaining (= 100 -18) = 82 Total time = $3 + 82/9$ T = 12.1 s (12 1/9)	B1 M1 A1 [3]	Numerator not 100 Not 109/9
iv	Distance before slows = $18 + (22 - 3)x9$ Distance while decelerating = $200 - 189 = 11$ $11 = 9t - 0.3t^2$ or $11 = (9 + 8.23)t/2$ or $8.23 = 9 - 0.6t$ t = 1.28 (1.2765, accept 1.3) t = 23.3 (23.276)	M1* A1 D*M1 A1 D*M1 A1 A1 A1 [7]	(=189 m) Two sub-regions considered Accept 10.99. 10.9 penalise -1PA. Uses $s = ut - 0.5 \times 0.6t^2$, or $v^2 = u^2 - 2 \times 0.6s$ with $s = (u+v)t/2$ or $v = u+at$ Finds t . (If QE, it must have 3 terms and smaller positive root chosen.)

4729 Mechanics 2

1 (i)	$\frac{1}{2} \times 75 \times 12^2$ or $\frac{1}{2} \times 75 \times$	3 ² (either KE)	B1		$M1 12^2 = 3^2 + 2a \times 180$	
	75×9.8×40	(PE)	B1		A1 $a = 0.375$ (3/8)	
	$R \times 180$ (change in ener	gy = 24337)	B1		$M1 75 \times 9.8 \times \sin \theta - R = 75a$	
	$\frac{1}{2} \times 75 \times 12^2 = \frac{1}{2} \times 75 \times 3^2 + 7$	$5 \times 9.8 \times 40 - R \times 180$	M1		A1 $R = 135$	
	R = 135 N		A1	5	(max 4 for no energy) 5	

2 (i)	$R = F = P/v = 44\ 000/v = 1400$	M1	
	$v = 31.4 \text{ m s}^{-1}$	A1 2	
(ii)	$44\ 000/v = 1400 + 1100 \times 9.8 \times 0.05$	M1	must have g
		A1	
	$v = 22.7 \text{ m s}^{-1}$	A1 3	
(iii)	22 000/10 + 1100×9.8×0.05 – 1400	M1	
	= 1100a	A1	8
	$a = 1.22 \text{ m s}^{-2}$	A1 3	8

3 (i)	$\cos\theta = 5/13 \text{ or } \sin\theta = 12/13 \text{ or } \theta = 67.4^{\circ}$	B1	any one of these
		M1	moments about A (ok without 70)
	$0.5 \times F \sin\theta = 70 \times 1.4 + 50 \times 2.8$	A1	$0.5\sin\theta = 0.4615$
	F = 516 N	A1 4	SR 1 for 303 (omission of beam)
(ii)	$F \sin \theta = 120 + Y$ (resolving vertically)	M1	M1/A1 for moments
	Y = 356 their F × 12/13 – 120	A1 7	(B) $Y \times 2.8 + 1.4 \times 70 = 2.3 \times 516 \times 12/13$
	$X = F\cos\theta$ (resolving horizontally)	M1	(C) $0.5 \times Y = 0.9 \times 70 + 2.3 \times 50$
	$X = 198$ their $F \times 5/13$	A1 /	(D) $1.2X = 1.4 \times 70 + 2.8 \times 50$
	Force = $\sqrt{(356^2 + 198^2)}$	M1	
	407 or 408 N	A1 6	10

4 (i)	$T = 0.4 \times 0.6 \times 2^2$	M1	
	T = 0.96 N	A1 2	
(ii)	S-T	B1	may be implied
	$S-T=0.1\times0.3\times2^2$	M1	
		A1	
	S = 1.08	A1 4	
(iii)	$v = r\omega$	M1	
	$v_P = 0.6$	A1	
	$v_B = 1.2$	A1	
	$\frac{1}{2} \times 0.1 \times 0.6^2 + \frac{1}{2} \times 0.4 \times 1.2^2$	M1	(0.018 + 0.288) separate speeds
	0.306	A1 5	11

5 (i)	$d = (2 \times 6 \sin \pi/4)/3\pi/4$	M1	must be correct formula with rads
	d = 3.60	A1 2	AG
(ii)	$d\cos 45^{\circ} = \text{``2.55''}$	B1	
			may be implied
	$5\overline{x} = 3 \times 3 + 2 \times \text{``2.55''}$	M1	moments must not have areas
		A1	
	$\bar{x} = 2.82$	A1	2kg/3kg misread (swap) gives
	$5 \ \overline{y} = 3 \times 6 + 2 \times (12 + \text{``2.55''})$	M1	$(2.73,11.13) \theta = 21.7^{\circ}$
		A1	(MR - 2) $(max 7 for (ii) + (iii))$
	$\bar{y} = 9.42$	A1 _	SR -1 for \overline{x} , \overline{y} swap
		7	
(iii)	$\tan\theta = 2.82/8.58$	M1	M0 for their \bar{x} / \bar{y}
	$\theta = 18.2^{\circ}$	A1 2	their $\overline{x}/(18-\overline{y})$

6 (i)	$I = 0.9 = 6 \times 0.2 - v \times 0.2$	M1	needs to be mass 0.2
		A1	
	v = 1.5	A1 3	
(ii)	0.6 = (c - b)/6	M1	restitution (allow 1.5 for M1)
		A1	
	$6 \times 0.2 = 0.2b + 0.1c$	M1	momentum (allow 1.5 for M1)
		A1	
	b = 2.8	A1	
	$0.4 \times 5 + 0.2 \times 1.5 = 0.4a + 0.2 \times 6$ or	M1	1st collision (needs their 1.5 for M1)
	$I = 0.9 = -0.4a0.4 \times 5$	A1	
	a = 2.75	A1	
	2.75 < 2.8	M1	compare v 's of A and B (calculated)
	no further collision	A1 10	13

7(i)	$9 = 17\cos 25^{\circ} \times t$	M1	B1 $y=x\tan\theta-4.9x^2/v^2\cos^2\theta$
	$t = 0.584$ (or $9/17\cos 25^{\circ}$)	A1	M1/A1 y =9tan(-25°)-4.9×9 ² /17 ² cos ² 25°
	$d = 17\sin 25^{\circ} \times 0.584 + \frac{1}{2} \times 9.8x \times 0.584^{2} $ (d	M1	
	$= ht \log (5.87)$	A1	A1 $y = -5.87$
	h = 2.13	A1 5	2.13
(ii)	$v_h = 17\cos 25^{\circ}$ (15.4)	B1	M1/A1 dy/dx =
	$v_v = 17\sin 25^\circ + 9.8 \times 0.584$ or	M1	$\tan\theta - 9.8x/v^2\cos^2\theta$
	$ v_v ^2 = (17\sin 25^\circ)^2 + 2 \times 9.8 \times 5.87$		
	$v_v = 12.9$	A1	A1 $dy/dx = -0.838$
	$\tan\theta = 12.9/15.4$	M1	M1 tan ⁻¹ (838)
	θ = 40.0° below horizontal	A1 5	or 50.0° to vertical
(iii)	speed = $\sqrt{(12.9^2 + 15.4^2)}$	M1	(20.1)
		A1 🗸	
	$1/2mv^2 = 1/2m \times 20.1^2 \times 0.7$	M1	NB 0.3 instead of 0.7 gives 11.0 (M0)
	$v = 16.8 \text{ m s}^{-1}$	A1 4	14

4730 Mechanics 3

1 i	Horiz. comp. of vel. after impact is 4ms ⁻¹ Vert. comp. of vel. after impact is	B1	May be implied
	$\sqrt{5^2 - 4^2} = 3\text{ms}^{-1}$	B1	AG
	Coefficient of restitution is 0.5	B1 [3]	From $e = 3/6$
ii	Direction is vertically upwards Change of velocity is 3 – (-6) Impulse has magnitude 2.7Ns	B1 M1 A1 [3]	From $m(\Delta v) = 0.3 \times 9$
2 i	Horizontal component is 14N $80 \times 1.5 = 14 \times 1.5 + 3Y$ or $3(80 - Y) = 80 \times 1.5 + 14 \times 1.5$ or $1.5(80 - Y) = 14 \times 0.75 + 14 \times 0.75 + 1.5Y$ Vertical component is 33N upwards	B1 M1 A1 A1 [4]	For taking moments for AB about A or B or the midpoint of AB
ii	Horizontal component at C is 14N [Vertical component at C is $(\pm)\sqrt{50^2 - 14^2}$] [$W = (\pm)48 - 33$] Weight is 15N	B1 M1 DM1 A1 [4]	May be implied for using $R^2 = H^2 + V^2$ For resolving forces at C vertically
3 i	$4 \times 3\cos 60^{\circ} - 2 \times 3\cos 60^{\circ} = 2b$ b = 1.5 j component of vel. of $B = (-)3\sin 60^{\circ}$ $[v^2 = b^2 + (-3\sin 60^{\circ})^2]$ Speed (3ms^{-1}) is unchanged [Angle with l.o.c. = $\tan^{-1}(3\sin 60^{\circ}/1.5)$] Angle is 60° .	M1 A1 A1 B1ft M1 A1ft M1 A1ft [8]	For using the p.c.mmtm parallel to l.o.c. ft consistent $\sin/\cos mix$ For using $v^2 = b^2 + v_y^2$ AG ft - allow same answer following consistent $\sin/\cos mix$. For using angle = $\tan^{-1}(\pm v_y/v_x)$ ft consistent $\sin/\cos mix$
ii	$[e(3\cos 60^{\circ} + 3\cos 60^{\circ}) = 1.5]$ Coefficient is 0.5	M1 A1ft [2]	For using NEL ft - allow same answer following consistent sin/cos mix throughout.

4 i	$F - 0.25v^{2} = 120v(dv/dx)$ $F = 8000/v$ $[32000 - v^{3} = 480v^{2}(dv/dx)]$ $\frac{480v^{2}}{v^{3} - 32000} \frac{dv}{dx} = -1$	M1 A1 B1 M1 A1 [5]	For using Newton's second law with $a = v(dv/dx)$ For substituting for F and multiplying throughout by $4v$ (or equivalent) AG
ii	$\int \frac{480v^2}{v^3 - 32000} dv = -\int dx$ $160 \ln(v^3 - 32000) = -x (+A)$ $160 \ln(v^3 - 32000) = -x + 160 \ln 32000$ or $160 \ln(v^3 - 32000) - 160 \ln 32000 = -500$	M1 A1 M1 A1ft	For separating variables and integrating For using $v(0) = 40$ or $[160 \ln(v^3 - 32000)]^{v}_{40} = [-x]^{500}_{0}$ ft where factor 160 is incorrect but +ve,
	$(v^3 - 32000)/32000 = e^{-x/160}$ Speed of m/c is 32.2 ms ⁻¹	B1ft B1 [6]	Implied by $(v^3 - 32000)/32000 = e^{-3.125}$ (or = 0.0439). ft where factor 160 is incorrect but +ve, or for an incorrect non-zero value of A
5 i	$x_{\text{max}} = \sqrt{1.5^2 + 2^2} - 1.5 (= 1)$ $[T_{\text{max}} = 18 \times 1/1.5]$ Maximum tension is 12N	B1 M1 A1 [3]	For using $T = \lambda x/L$
	(a) Gain in EE = $2[18(1^2 - 0.2^2)]/(2 \times 1.5)$ (11.52) Loss in GPE = 2.8mg (27.44m)	M1 A1 B1	For using EE = $\lambda x^2/2L$ May be scored with correct EE terms in expressions for total energy on release and total energy at lowest point May be scored with correct GPE terms in expressions for total energy on release and total energy at lowest point
ii	[2.8 $m \times 9.8 = 11.52$] m = 0.42 (b) $\frac{1}{2}mv^2 = mg(0.8) + 2 \times 18 \times 0.2^2/(2 \times 1.5)$ or $\frac{1}{2}mv^2 = 2 \times 18 \times 1^2/(2 \times 1.5) - mg(2)$ Speed at M is 4.24ms ⁻¹	M1 A1 [5] M1 A1ft A1ft [3]	For using the p.c.energy AG For using the p.c.energy KE, PE & EE must all be represented ft only when just one string is considered throughout in evaluating EE ft only for answer 4.10 following consideration of only one string

6 i	$[-mg \sin \theta = m L(d^2 \theta/dt^2)]$ $d^2 \theta/dt^2 = -(g/L)\sin \theta$	M1 A1 [2]	For using Newton's second law tangentially with $a = Ld^2 \theta/dt^2$ AG
ii	$\begin{bmatrix} d^2 \theta / dt^2 = -(g/L) \theta \end{bmatrix}$ $d^2 \theta / dt^2 = -(g/L) \theta \implies \text{motion is SH}$	M1 A1 [2]	For using $\sin \theta \approx \theta$ because θ is small $(\theta_{\text{max}} = 0.05)$ AG
iii	$[4\pi/7 = 2\pi/\sqrt{9.8/L}]$ $L = 0.8$	M1 A1 [2]	For using $T = 2\pi/n$ where $-n^2$ is coefficient of θ
iv	$[\theta = 0.05\cos 3.5 \times 0.7]$ $\theta = -0.0385$ $t = 1.10 \text{ (accept 1.1 or 1.09)}$	M1 A1ft M1 A1ft [4]	For using $\theta = \theta_0 \cos nt \ \{\theta = \theta_0 \sin nt \text{ not accepted unless the } t \text{ is reconciled with the } t \text{ as defined in the question} \}$ ft incorrect $L \ \{\theta = 0.05 \cos[4.9/(5L)^{\frac{1}{2}}]\}$ For attempting to find 3.5t $(\pi < 3.5t < 1.5\pi)$ for which $0.05 \cos 3.5t = \text{answer}$ found for θ or for using $3.5(t_1 + t_2) = 2\pi$ ft incorrect $L \ \{t = [2\pi (5L)^{\frac{1}{2}}]/7 - 0.7\}$
v	$\theta^{-2} = 3.5^{2}(0.05^{2} - (-0.0385)^{2}) \text{ or }$ $\theta^{-} = -3.5 \times 0.05 \sin (3.5 \times 0.7) (\theta^{-} = -0.1116)$ Speed is 0.0893ms^{-1} (Accept answers correct to 2 s.f.)	M1 A1ft A1ft [3]	For using $\theta^2 = n^2(\theta_o^2 - \theta^2)$ or $\theta = -n \theta_o \sin nt$ {also allow $\theta = n\theta_o \cos nt$ if $\theta = \theta_o \sin nt$ has been used previously} ft incorrect θ with or without 3.5 represented by $(g/L)^{\frac{1}{2}}$ using incorrect θ in (iii) or for $\theta = 3.5 \times 0.05 \cos(3.5 \times 0.7)$ following previous use of $\theta = \theta_o \sin nt$ ft incorrect $\theta = 0.5 \cos nt$ ft i

7 i	Gain in PE = $mga(1 - \cos \theta)$	B1	
	$\left[\frac{1}{2} mu^2 - \frac{1}{2} mv^2 = mga(1 - \cos\theta) \right]$	M1	For using KE loss = PE gain
	$v^2 = u^2 - 2ga(1 - \cos\theta)$	A1	
	$[R - mg \cos \theta = m(\text{accel.})]$		
	$R = mv^2/a + mg\cos\theta$	M1	For using Newton's second law radially
	2 - 4	A1	
	$[R = m\{u^2 - 2ga(1 - \cos\theta)\}/a + mg\cos\theta]$	M1	For substituting for v^2
	$R = mu^2/a + mg(3\cos\theta - 2)$	A1	AG
		[7]	
ii	$[0 = mu^2/a - 5mg]$	M1	For substituting $R = 0$ and $\theta = 180^{\circ}$
11	$\begin{bmatrix} u^2 = 5ag \end{bmatrix}$	A1	1 of substituting K = 0 and 0 = 180
	$[v^2 = 5ag - 4ag]$ Least value of v^2 is ag	M1 A1 [4]	For substituting for u^2 (= 5 ag) and θ = 180° in v^2 (expression found in (i)) { but M0 if $v = 0$ has been used to find u^2 } AG
iii	$[0 = u^{2} - 2ga(1 - \sqrt{3}/2)]$ $u^{2} = ag(2 - \sqrt{3})$	M1 A1 [2]	For substituting $v^2 = 0$ and $\theta = \pi/6$ in v^2 (expression found in (i)) Accept $u^2 = 2ag(1 - \cos \pi/6)$

4731 Mechanics 4

1 (i)	Using $\omega_2^2 = \omega_1^2 + 2\alpha\theta$, $67^2 = 83^2 + 2\alpha \times 1000$	0	M1	
	$\alpha = -1.2$		A1	
	Angular deceleration is 1.2 rad s ⁻²		[2]	
(ii)	Using $\theta = \omega_1 t + \frac{1}{2} \alpha t^2$,		M1	
	$400 = 83t - 0.6t^2$		A1ft	
	$t = 5 \ or \ 133\frac{1}{3}$		M1	Solving to obtain a value of <i>t</i>
	Time taken is 5 s		A1	
			[4]	
	Alternative for (ii)			(M0 if ω = 67 is used in (ii))
	$\omega_2^2 = 83^2 - 2 \times 1.2 \times 400$ M1A	1 ft		
	$\omega_2 = 77$			
	77 = 83 - 1.2t	M1		
	t=5	A1		

2	Volume $V = \int \pi y^2 dx = \int_a^{2a} \pi \frac{a^6}{x^4} dx$	M1	π may be omitted throughout
	$=\pi \left[-\frac{a^6}{3x^3} \right]_a^{2a} = \frac{7}{24}\pi a^3$	A1	For integrating x^{-4} to obtain $-\frac{1}{3}x^{-3}$
	$V\overline{x} = \int \pi x y^2 \mathrm{d}x$	M1	for $\int xy^2 dx$
	$= \int_{a}^{2a} \pi \frac{a^6}{x^3} \mathrm{d}x$	A1	Correct integral form (including limits)
	$= \pi \left[-\frac{a^6}{2x^2} \right]_a^{2a} = \frac{3}{8} \pi a^4$	A1	For integrating x^{-3} to obtain $-\frac{1}{2}x^{-2}$
	$\overline{x} = \frac{\frac{3}{8}\pi a^4}{\frac{7}{24}\pi a^3}$ $= \frac{9a}{7}$	M1	Dependent on previous MIMI
	$=\frac{9a}{7}$	A1 [7]	

3 (i)		M1	Applying parallel axes rule
	$I = \frac{1}{2} (4 m)(2 a)^2 + (4 m) a^2$	A1	
	$+m(3a)^2$	B1	
	$=21ma^2$	A1 [4]	
(ii)	From P, $\bar{x} = \frac{(4m)a + m(3a)}{5m} \ (= \frac{7a}{5})$	M1 M1	Correct formula $2\pi \sqrt{\frac{I}{mgh}}$ seen
	Period is $2\pi \sqrt{\frac{2 \ln a^2}{5 mg(\frac{7}{5}a)}}$	A1 ft	or using $L = I\overline{\theta}$ and period $2\pi/\omega$
	$=2\pi\sqrt{\frac{3a}{g}}$	A1 [4]	
	Alternative for (ii)		
	$-4mga\sin\theta - mg(3a)\sin\theta = (21ma^2)\overline{\theta}^{\square} \qquad M1$		Using $L = I \theta$ with three terms
	M1		Using period $2\pi/\omega$
	Period is $2\pi \sqrt{\frac{21ma^2}{7mga}} = 2\pi \sqrt{\frac{3a}{g}}$ A1 ft A1		

4 (i)	$\frac{\sin \theta}{62} = \frac{\sin 40}{48}$ $\theta = 56.1^{\circ} \text{ or } 123.9^{\circ}$ Bearings are 018.9° and 311.1°	M1 M1 A1 A1A 1 [5]	Velocity triangle One value sufficient Accept 19° and 311°
(ii)	Shorter time when $\theta = 56.1^{\circ}$	B1 ft	
	$\frac{v}{\sin 83.87} = \frac{48}{\sin 40}$ Relative speed is $v = 74.25$	M1	Or $v^2 = 62^2 + 48^2 - 2 \times 62 \times 48 \cos 83.87$
	Time to intercept is $\frac{3750}{74.25}$	M1	Dependent on previous M1
	= 50.5 s	A1 [4]	
	Alternative for (i) and (ii) $ \begin{pmatrix} 48 \sin \phi \\ 48 \cos \phi \end{pmatrix} t = $		component eqns (displacement or velocity)
	M1		obtaining eqn in ϕ or t or v (=3750/t)
	$3.732\cos\phi - \sin\phi = 3.208$ A1		correct simplified equation or $t^2 - 231.3t + 9131.5 = 0$ [$t = 50.5$, 180.8] or $v^2 - 94.99v + 1540 = 0$ [$v = 74.25$, 20.74] solving to obtain a value of ϕ
	M1 M1		solving to obtain a value of t (max A1 if any extra values given)
	$\phi = 18.9^{\circ} \text{ and } 311.1^{\circ}$ A1A1		appropriate selection for shorter time
	B1 ft		
	t = 50.5 A1		

5 (i)	Area is $\int_0^2 (8-x^3) dx = \left[8x - \frac{1}{4}x^4 \right]_0^2 = 12$	B1	
	Mass per m ² is $\rho = \frac{63}{12} = 5.25$	M1	
	$I_y = \sum (\rho y \delta x) x^2 = \rho \int x^2 y dx$	M1	for $\int x^2 y dx$ or $\int x^3 dy$
	$= \rho \int_0^2 (8x^2 - x^5) dx$	A1	or $\frac{1}{3} \rho \int_0^8 (8 - y) dy$
	$= \rho \left[\frac{8}{3} x^3 - \frac{1}{6} x^6 \right]_0^2 = \frac{32}{3} \rho$	A1	for $\frac{32}{3}$
	$= \frac{32}{3} \times \frac{63}{12} = 56 \text{ kg m}^2$	A1 AG	
		[6]	
(ii)	Anticlockwise moment is $800-63\times9.8\times\frac{4}{5}$	M1	
	= 306.08 N m > 0		
	so it will rotate anticlockwise	A1	Full explanation is required; (anti)clockwise should be mentioned
		[2]	before the conclusion
(iii)	$I = I_x + I_y = 1036.8 + 56 (=1092.8)$	B1	
	WD by couple is $800 \times \frac{1}{2} \pi$	B1	
	Change in PE is $63 \times 9.8 \times \left(\frac{24}{7} - \frac{4}{5}\right)$	B1	
	$800 \times \frac{1}{2}\pi = \frac{1}{2}I\omega^2 - 63 \times 9.8 \times \left(\frac{24}{7} - \frac{4}{5}\right)$	M1 A1	Equation involving WD, KE and PE May have an incorrect value for I;
	$1256.04 = 546.4\omega^2 - 1622.88$		other terms and signs are cao
	$\omega = 2.30 \text{ rad s}^{-1}$		
		A1 [6]	
		լ [Մ]	

	Ι		T .
6 (i)	GPE is $mg(a \sin 2\theta)$	B1	Or $mg(2a\cos\theta\sin\theta)$
	$AB = 2a\cos\theta \text{ or } AB^2 = a^2 + a^2 - 2a^2\cos(\pi - 2\theta)$		
	$\sqrt{3}mg$		
	EPE is $\frac{\sqrt{3}mg}{2a}(2a\cos\theta)^2$	B1	Any correct form
		D1	
	$= \sqrt{3}mga(1 + \cos 2\theta)$	M1	Expressing EPE and GPE in terms of $\cos 2\theta$ and $\sin 2\theta$
	Total PE is $V = \sqrt{3}mga(1 + \cos 2\theta) + mga \sin 2\theta$		
	$= mga(\sqrt{3} + \sqrt{3}\cos 2\theta + \sin 2\theta)$	A 1	
		AG	
		[4]	
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = mga(-2\sqrt{3}\sin 2\theta + 2\cos 2\theta)$	В1	(B0 for $\frac{dV}{d\theta} = -2\sqrt{3}\sin 2\theta + 2\cos 2\theta$)
	$= 0 \text{ when } 2\sqrt{3}\sin 2\theta = 2\cos 2\theta$	M1	
	$\tan 2\theta = \frac{1}{\sqrt{3}}$		
	$\theta = \frac{\pi}{12}, -\frac{5\pi}{12}$	M1	Solving to obtain a value of θ
	12 ' 12	A1A1 [5]	Accept 0.262, -1.31 or 15°, -75°
(iii)	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = mga(-4\sqrt{3}\cos 2\theta - 4\sin 2\theta)$	B1ft	
	When $\theta = \frac{\pi}{12}$, $\frac{d^2V}{d\theta^2} = -8mga < 0$	M1	Determining the sign of V"or M2 for alternative method for max / min
	so this position is unstable	A1	
	When $\theta = -\frac{5\pi}{12}$, $\frac{d^2V}{d\theta^2} = 8mga > 0$		
	so this position is stable	A 1	
	_	[4]	

7 (i)	Initially $\cos\theta = \frac{0.6}{1.5} = 0.4$	M1	Equation involving KE and PE
	$\frac{1}{2} \times 4.9 \ \omega^2 = 6 \times 9.8(0.5 \times 0.4 - 0.5 \cos \theta)$	A1	
	$\omega^2 = 12(0.4 - \cos \theta)$		
	$\omega^2 = 4.8 - 12\cos\theta$	A1	
		AG	
		[3]	
(ii)	$6 \times 9.8 \times 0.5 \sin \theta = 4.9 \alpha$	M1	or $2\omega \frac{d\omega}{d\theta} = 12\sin\theta$ or $2\omega \frac{d\omega}{dt} = 12\sin\theta \frac{d\theta}{dt}$
	$\alpha = 6\sin\theta (\text{rad s}^{-2})$	A1	
		[2]	
(iii)		M1	for radial acceleration $r\omega^2$
	$6 \times 9.8 \cos \theta - F = 6 \times 0.5 \omega^2$	M1	radial equation of motion
	$58.8\cos\theta - F = 14.4 - 36\cos\theta$		Dependent on previous M1
	$F = 94.8\cos\theta - 14.4$	A1	
		AG	for transverse acceleration $r \alpha$
	$6 \times 9.8 \sin \theta - R = 6 \times 0.5 \alpha$	M1	transverse equation of motion
	$58.8\sin\theta - R = 18\sin\theta$	M1	Dependent on previous M1
	$R = 40.8 \sin \theta$	A1	
		[6]	
(iv)	If <i>B</i> reaches the ground, $\cos \theta = -0.4$	M1	Allow M1A0 if $\cos \theta = +0.4$ is used
	F = -52.32	A1	
	$\sin \theta = \sqrt{0.84} \ [\theta = 1.982 \ or \ 113.6^{\circ}] R = 37.39$	M1	Obtaining a value for R
	Since $\frac{52.32}{37.39} = 1.40 > 0.9$, this is not possible	A1 [4]	Or $\mu R = 33.65$, and $52.32 > 33.65$
	Alternative for (iv) Slips when $F = -0.9R$		
	94.8 $\cos\theta - 14.4 = -36.72\sin\theta$ M1 $\theta = 1.798 [103.0^{\circ}]$ A1		Allow M1A0 if $F = +0.9R$ is used
	B reaches the ground when $\cos \theta = -0.4$ M1 $\theta = 1.982$ [113.6°] so it slips before this A1		Allow M1A0 if $\cos \theta = +0.4$ is used

1			Q1: if consistent "0.8" incorrect or ¹ / ₈ , ⁷ / ₈ or 0.02 allow M marks in ii, iii & 1 st M1 in i
i	Binomial stated	M1	or implied by use of tables or ${}^{8}C_{3}$ or $0.2^{a} \times 0.8^{b}$ $(a+b=8)$
	$0.9437 - 0.7969$ or ${}^{8}C_{3} \times 0.2^{3} \times 0.8^{5}$ = 0.147 (3 sfs)	M1 A1 3	01 0.2 × 0.0 (a × 0 ° 0)
ii	1- 0.7969	M1	allow 1– 0.9437 or 0.056(3) or equiv using formula
	= 0.203 (3 sf)	A1 2	of equiv using formula
iii	8 × 0.2 oe	M1	$8 \times 0.2 = 2 \text{ M1A0}$
	1.6	A1 2	$1.6 \div 8 \text{ or }^{1}/_{1.6}\text{M0A0}$
Total		7	
2	first two d 's = ± 1	B1	S_{xx} or $S_{yy} = 28$ B1
	Σd^2 attempted (= 2)	M1	$S_{xy} = 27 $ B1
	$ \begin{array}{c c} 1 - \underline{6 \times "2"} \\ 7(7^2 - 1) \end{array} $	M1dep	$S_{xy}/\sqrt{(S_{xx}S_{yy})}$ M1 dep B1
	$= \frac{7(7-1)}{28} \text{ or } 0.964 \text{ (3 sfs)}$	A1	1234567 & 1276543 (ans ² / ₇): MR, lose A1
Total		4	
3 i	x independent or controlled or changed Value of y was measured for each x x not dependent	B1 1	Allow Water affects yield, or yield is dependent or yield not control water supply Not just <i>y</i> is dependent Not <i>x</i> goes up in equal intervals Not <i>x</i> is fixed
ii	(line given by) minimum sum of squs	B1 B1 2	B1 for "minimum" or "least squares" with inadequate or no explanation
iii	$S_{xx} = 17.5$ or 2.92 $S_{yy} = 41.3$ or 6.89 $S_{xy} = 25$ or 4.17	B1	or $91 - 21^{2}/_{6}$ or $394 - 46^{2}/_{6}$ or $186 - \frac{21 \times 46}{/_{6}}$ B1 for any one
	$r = \frac{S_{xy}}{\sqrt{(S - S_x)}}$	M1	dep B1
	= 0.930 (3 sf)	A1 3	0.929 or 0.93 with or without wking B1M1A0 SC incorrect <i>n</i> : max B1M1A0
iv	Near 1 or lg, high, strong, good corr'n or relnship oe	B1ft	r small: allow little (or no) corr'n oe
	Close to st line or line good fit	B1 2	Not line accurate. Not fits trend
Total		8	

4			Q4: if consistent "0.7" incorrect or ¹ / ₃ , ² / ₃ or 0.03 allow M marks in ii, iii & 1 st M1 in i
i	Geo stated $0.7^3 \times 0.3$ alone	M1 M1	or implied by $q^n \times p$ alone $(n > 1)$ $0.7^3 - 0.7^4$
	$^{1029}/_{10000}$ or 0.103 (3 sf)	A1 3	
ii	0.7 ⁴ alone	M1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	= ²⁴⁰¹ / ₁₀₀₀₀ or 0.240 (3 sf)	A1 2	
iii	$1 - 0.7^{5}$	M2	or $0.3 + 0.7 \times 0.3 + + \dots + 0.7^4 \times 0.3$ M2 M1 for one term extra or omitted or wrong
			or for 1– (above)
			M1 for 1– 0.7 ⁶ or 0.7 ⁵
	= 0.832 (3 sfs)	A1 3	NB Beware: $1 - 0.7^6 = 0.882$
		8	
5i	$\begin{vmatrix} 25/10 \\ = 2.5 \end{vmatrix}$	M1 A1 2	Allow ²⁵ / _(9to10) or 2.78: M1
ii	(19.5, 25)	B1	
	(9.5,0)	B1 2	Allow (24.5, 47)
			Both reversed: SC B1
			If three given, ignore (24.5, 47)
iii	Don't know exact or specific values of <i>x</i> (or min or max or quartiles or median or		Exact data not known
	whiskers). oe		Allow because data is rounded
	Can only estimate (min or max or		
	quartiles or median or whiskers) oe		
	Can't work out () oe Data is grouped oe	B1 1	
Total	-	5	
1 Otai		1 3	

			hy,
			N. Mary
4732	Mark Sch	eme	June 20 Taylor
6i	$\Sigma x \div 11$ 70	M1 A1	June 20. Tarnscloud. Com $\geq 5 \text{ terms, or } \sum (x-\bar{x})^2$
	Σx^2 attempted	M1	≥ 5 terms, or $\sum (x-\bar{x})^2$
	$\sqrt{\frac{\sum x^2}{11}} - \overline{x}^2 = \sqrt{(\frac{54210}{11} - 70^2)} \text{ or } \sqrt{28.18} \text{ or}$ 5.309	A1	or $\sqrt{\frac{\sum (x - \overline{x})^2}{11}} = \sqrt{\frac{310}{11}}$ or $\sqrt{28.18}$ ie correct substn or result
	(= 5.31) AG	4	$If \times {}^{11}/_{10}$: M1A1M1A0
ii	Attempt arrange in order med = 67 74 and 66	M1 A1 M1	or (72.5 – 76.5) – (65.5 – 66.5) incl
	IQR = 8	A1 4	must be from 74 – 66
			iii, iv & v: ignore extras
iii	no (or fewer) extremes this year oe sd takes account of all values sd affected by extremes	B1 1	fewer high &/or low scores highest score(s) less than last year
	less spread tho' middle 50% same less spread tho' 3 rd & 9 th same or same gap		Not less spread or more consistent Not range less
iv	sd measures spread or variation or consistency oe	B1 1	sd less means spread is less oe or marks are closer together oe
V	more consistent, more similar, closer together, nearer to mean	B1 1	allow less variance
	less spread		Not range less Not highest & lowest closer
Total		11	
7i	${}^{8}C_{3} = 56$	M1 A1 2	
ii	$^{7}\text{C}_{2}$ or or $^{7}\text{P}_{2}$ / $^{8}\text{P}_{3}$ 1 / $_{8}$ not from incorrect	M1	${}^{8}C_{1}+{}^{7}C_{1}+{}^{6}C_{1} \text{ or } 21$ ${}^{7}/_{8} \times {}^{6}/_{7} \times {}^{5}/_{6}$ or $8 \times 7 \times 6$
	$ \begin{array}{c c} \div (^{8}C_{3} \text{ or "56"}) \text{ only} \\ = ^{3}/_{8} \\ \end{array} $ $ \begin{array}{c c} \times 3 \text{ only} \\ \text{or} \\ ^{1}/_{8} + ^{7}/_{8} \times ^{1}/_{7} + ^{7}/_{8} \times ^{6}/_{7} \times ^{1}/_{8} \\ 6 \end{array} $	M1 A1 3	or $\frac{1}{8}$ or $\frac{1}{8}$ or $\frac{1}{6}$ or $\frac{1}{8}$ or
iii	$^{8}P_{3}$ or $8\times7\times6$ or $^{8}C_{1}\times^{7}C_{1}\times^{6}C_{1}$ or 336	M1	$1/8 \times 1/7 \times 1/6$ only M2 If \times or \div : M1 $(1/8)^3$ M1
	$1 \div {}^{8}P_{3}$ only	M1	
Total	$= \frac{1}{336}$ or 0.00298 (3 sf)	A1 3 8	+

8ia	18/ ₁₉ or 1/ ₁₉ seen 17/ ₁₈ or 1/ ₁₈ seen structure correct ie 6 branches	B1 B1 B1	regardless of probs & lal	bels
	all correct incl. probs and W & R	B1 4	(or 14 branches with cor	1ect 0s & 1s)
b	$ \frac{1}{20} + \frac{19}{20} \times \frac{1}{19} + \frac{19}{20} \times \frac{18}{19} \times \frac{1}{18} $ $ = \frac{3}{20} $	M2 A1 3	M1 any 2 correct terms added	$1 - \frac{^{19}/_{20} \times ^{18}/_{19} \times ^{17}/_{18}}{1 - \frac{^{19}/_{20} \times ^{18}/_{19} \times ^{17}/_{18}}$
iia	$\begin{bmatrix} \frac{19}{20} \times \frac{18}{19} \\ = \frac{9}{10} & \text{oe} \end{bmatrix}$	M1 A1 2	$^{19}/_{20} \times ^{18}/_{19} \times ^{1}/_{18} + ^{19}/_{20} \times ^{18}/_{19}$	$_{19}^{1} \times ^{17}/_{18} \text{ or } ^{1}/_{20} + ^{17}/_{20}$
b	$ \begin{array}{l} (P(X=1) = {}^{1}/_{20}) \\ {}^{19}/_{20} \times {}^{1}/_{19} \\ = {}^{1}/_{20} \end{array} $	M1 A1	or $1 - ({}^{1}/_{20} + {}^{9}/_{10})$ or 2 probs	of ¹ / ₂₀ M1A1
	$\sum xp = \frac{57}{20}$ or 2.85	M1 A1 4	\geq 2 terms, ft their p's if NB: $^{19}/_{20} \times 3 = 2.85$ no m	
			With replacement:	
ia			Original scheme	
ib			$\begin{array}{c} {}^{1}/_{20} + {}^{19}/_{20} \times {}^{1}/_{20} + {}^{19}/_{20}) \\ \text{or } 1 - {}^{19}/_{20})^{2} \\ {}^{19}/_{20})^{2} \text{or } {}^{19}/_{20})^{2} \times {}^{1}/_{20} + {}^{19}/_{20} \end{array}$	$0^2 \times 1/_{20}$ M1
iia			$\left(\frac{^{19}}{_{20}} \right)^2$ or $\left(\frac{^{19}}{_{20}} \right)^2 \times ^{1} /_{20} + \frac{^{19}}{_{20}}$	$(^{19}/_{20})^2 \times ^{19}/_{20} M1$
b			Original scheme But NB ans 2.85(25)	M1A0M1A0
Total		13		

Mark Scheme

4732		Mark S	Scheme	June 20. The implied by $2^{nd}M1$ allow $n-1$ or $\log_{0.88}0.05$ or $23.4()$
9i	$(1-0.12)^n$	0.0023 - 0.052	M1	Can be implied by $2^{nd}M1$ allow $n-1$
	log 0.05 log 0.88	or $0.88^{23} = 0.052$ or $0.88^{24} = 0.046$	M1	or log _{0.88} 0.05 or 23.4()
	n=24		A1 3	Ignore incorrect inequ or equals signs
ii	$^{6}C_{2} \times 0.88^{4} \times 0.12^{2}$	(= 0.1295)	M3	or $0.88^4 \times 0.12^2$ M2 or $^6C_2 \times 0.88^4 \times 0.12^2$ + extra M2 or 2 successes in 6 trials implied or 6C_2 M1
	× 0.12 = 0.0155		M1 A1 5	$dep \ge M1$ $0.88^4 \times 0.12^2 \times 0.12: \qquad M2M1$ $0.88^4 \times 0.12^3 \qquad M0M0A0$ unless clear P(2 success in 6 trials) × 0.12 in which case M2M1A0
Total			8	

Total 72 marks

1	$\frac{105.0 - \mu}{\sigma} = -0.7; \frac{110.0 - \mu}{\sigma} = -0.5$ Solve: $\sigma = 25$ $\mu = 122.5$	M1 A1 B1 M1 A1 A1	6	Standardise once, equate to Φ^{-1} , allow σ^2 Both correct including signs & σ , no cc (continuity correction), allow wrong z Both correct z-values. "1 –" errors: M1A0B1 Get either μ or σ by solving simultaneously σ a.r.t. 25.0 μ = 122.5 ± 0.3 or 123 if clearly correct, allow from σ^2 but <i>not</i> from σ = –25.
2	Po(20) \approx N(20, 20) Normal approx. valid as $\lambda > 15$ $1 - \Phi\left(\frac{24.5 - 20}{\sqrt{20}}\right) = 1 - \Phi(1.006)$ = 1 - 0.8427 = 0.1573	M1 A1 B1 M1 A1	6	Normal stated or implied (20, 20) or (20, $\sqrt{20}$) or (20, 20 ²), can be implied "Valid as $\lambda > 15$ ", or "valid as λ large" Standardise 25, allow wrong or no cc, $\sqrt{20}$ errors $1.0 < z \le 1.01$ Final answer, art 0.157
3	H ₀ : $p = 0.6$, H ₁ : $p < 0.6$ where p is proportion in population who believe it's good value $R \sim B(12, 0.6)$ α : $P(R \le 4) = 0.0573$ > 0.05 β : CR is ≤ 3 and $4 > 3$	B2 M1 A1 B1		Both, B2. Allow π % One error, B1, except x or \overline{x} or r or R : 0 B(12, 0.6) stated or implied, e.g. N(7.2, 2.88) Not P(< 4) or P(\geq 4) or P($=$ 4) Must be using P(\leq 4), or P($>$ 4) < 0.95 and binomial Must be using CR; explicit comparison needed
	p = 0.0153 Do not reject H ₀ . Insufficient evidence that the proportion who believe it's good value for money is less than 0.6	A1 M1 A1	7	Correct conclusion, needs B(12,0.6) and \leq 4 Contextualised, some indication of uncertainty [SR: N(7.2,) or Po(7.2): poss B2 M1A0] [SR: P(\leq 4) or P($=$ 4) or P(\geq 4): B2 M1A0]
4 (i)	Eg "not all are residents"; "only those in street asked"	B1 B1	2	One valid relevant reason A definitely different valid relevant reason Not "not a random sample", not "takes too long"
(ii)	Obtain list of whole population Number it sequentially Select using random numbers [Ignore method of making contact]	B1 B1 B1	3	"Everyone" or "all houses" must be implied Not "number it with random numbers" unless then "arrange in order of random numbers" SR: "Take a random sample": B1 SR: Systematic: B1 B0, B1 if start randomly chosen
(iii)	Two of: α: Members of population equally likely to be chosen β: Chosen independently/randomly γ: Large sample (e.g. > 30)	B1 B1	2	One reason. NB: If "independent", must be "chosen" independently, not "views are independent" Another reason. Allow "fixed sample size" but not both that and "large sample". Allow "houses"

				mn. Mr. M.
4733	Ма	rk So	che	me June 20 Trains
5 (i)	Bricks scattered at constant average rate & independently of one another	B1 B1	2	me June 20. B1 for each of 2 different reasons, in context. (Treat "randomly" ≡ "singly" ≡ "independently")
(ii)	Po(12) $P(\le 14) - P(\le 7) = .77200895$ [or P(8) + P(9) + + P(14)] = 0.6825	B1 M1	3	Po(12) stated or implied Allow one out at either end or both, eg 0.617, or wrong column, but <i>not</i> from Po(3) nor, eg, .9105 – .7720 Answer in range [0.682, 0.683]
(iii)	$e^{-\lambda} = 0.4$ $\lambda = -\ln(0.4)$ = 0.9163 Volume = 0.9163 ÷ 3 = 0.305	B1 M1 A1 M1	4	This equation, aef, can be implied by, eg 0.9 Take ln, or 0.91 by T & I λ art 0.916 or 0.92, can be implied Divide their λ value by 3 [SR: Tables, eg 0.9÷3: B1 M0 A0 M1]
6 (i)	$ \begin{array}{r} 33.6 \\ \underline{115782.84} \\ 100 \end{array} - 33.6^{2} = 28.8684 \\ \times \frac{100}{99} = 29.16 $	B1 M1 M1 A1	4	33.6 clearly stated [not recoverable later] Correct formula used for biased estimate $\times \frac{100}{99}, \text{ M's independent. Eg } \frac{\Sigma r^2}{99} [-33.6^2]$ SR B1 variance in range [29.1, 29.2]
(ii)	$\overline{R} \sim N(33.6, 29.16/9)$ = N(33.6, 1.8 ²) $1 - \Phi\left(\frac{32 - 33.6}{\sqrt{3.24}}\right) [= \Phi(0.8889)]$ = 0.8130	M1 A1 M1	4	Normal, their μ stated or implied Variance [their (i)]÷9 [not ÷100] Standardise & use Φ , 9 used, answer > 0.5, allow $\sqrt{\text{errors}}$, allow cc 0.05 but not 0.5 Answer, art 0.813
(iii)	No, distribution of R is normal so that of \overline{R} is normal	B2	2	Must be saying this. Eg "9 is not large enough": B0. Both: B1 max, unless saying that <i>n</i> is irrelevant.
7 (i)	$\frac{2}{9} \int_{0}^{3} x^{3} (3-x) dx = \frac{2}{9} \left[\frac{3x^{4}}{4} - \frac{x^{5}}{5} \right]_{0}^{3} [= 2.7] - $ $(1\frac{1}{2})^{2} = \frac{9}{20} \text{ or } 0.45$	M1 A1 B1 M1 A1	5	Integrate $x^2 f(x)$ from 0 to 3 [not for μ] Correct indefinite integral Mean is $1\frac{1}{2}$, soi [not recoverable later] Subtract their μ^2 Answer art 0.450
(ii)	$\begin{vmatrix} \frac{2}{9} \int_0^{0.5} x(3-x) dx = \frac{2}{9} \left[\frac{3x^2}{2} - \frac{x^3}{3} \right]_0^{0.5} \\ = \frac{2}{27} \text{ AG} \end{vmatrix}$	M1 A1	2	Integrate $f(x)$ between 0, 0.5, must be seen somewhere Correctly obtain given answer $\frac{2}{27}$, decimals other than 0.5 not allowed, 1 more line needed (eg [] = $\frac{1}{3}$)
(iii)	B(108, $\frac{2}{27}$) $\approx N(8, 7.4074)$ $1 - \Phi\left(\frac{9.5 - 8}{\sqrt{7.4074}}\right)$ $= 1 - \Phi(0.5511)$ = 0.291	B1 M1 A1 M1	6	B(108, $\frac{2}{27}$) seen or implied, eg Po(8) Normal, mean 8 variance (or SD) 200/27 or art 7.41 Standardise 10, allow $\sqrt{\text{errors}}$, wrong or no cc, needs to be using B(108,) Correct $\sqrt{\text{and cc}}$ Final answer, art 0.291

	(iv)	$\overline{X} \sim N(1.5, \frac{1}{240})$	B1 ,	Normal NB: not part (iii)
	(11)	1 1 (1.5, 240)	B1√	Mean their μ
			B1√ 3	Variance or SD (their 0.45)/108 [not (8, 50/729)]
8	(i)	$H_0: \mu = 78.0$	B1	Both correct, B2.
		$H_1: \mu \neq 78.0$	B1	One error, B1, but x or \bar{x} : B0.
		76.4-78.0	M1	Needs $\pm (76.4 - 78)/\sqrt{(\sigma \div 120)}$, allow $\sqrt{\sigma}$ errors
		$z = \frac{76.4 - 78.0}{\sqrt{68.9/120}} = -2.1115$	A1	art -2.11 , or $p = 0.0173 \pm 0.0002$
		> -2.576 or $0.0173 > 0.005$	B1	Compare z with $(-)2.576$, or p with 0.005
		$78 \pm z\sqrt{(68.9/120)}$	M1	Needs 78 and 120, can be – only
		= 76.048	A1√	Correct CV to 3 sf, $\sqrt{\text{on }z}$
		76.4 > 76.048	B1	$z = 2.576$ and compare 76.4, allow from 78 \leftrightarrow
				76.4
		Do not reject H ₀ . Insufficient	M1	Correct comparison & conclusion, needs 120,
		evidence that the mean time has		"like with like", correct tail, \bar{x} and μ right way
		changed		round
			A1√ 7	Contextualised, some indication of uncertainty
				,
	(ii)	1		IGNORE INEQUALITIES THROUGHOUT
	. ,	$\frac{1}{\sqrt{68.9/n}} > 2.576$	M1	Standardise 1 with <i>n</i> and 2.576, allow $\sqrt{\text{errors}}$, cc
		ν 08.97 <i>n</i>		etc but <i>not</i> 2.326
		$\sqrt{n} > 21.38$,	M1	Correct method to solve for \sqrt{n} (<i>not</i> from <i>n</i>)
		$n_{\min} = 458$	A1	458 only (<i>not</i> 457), <i>or</i> 373 from 2.326, signs
		Variance is estimated		correct
			B1 4	Equivalent statement, allow "should use t". In
				principle nothing superfluous, but "variance stays
				same" B1 bod

		nun y	
4733	Mark Scheme	June 20. Nath Sciology Con))
Specim	nen Answers	2010114.C	
Questic α β γ	Takes too long/too slow Interviewing people in the street isn't a random sample Many tourists so not representative	B0 B0 B1	
δ ε ζ	Those who don't shop won't have their views considered Interviewers biased as to who they ask Views influenced by views of others	B1 B1 B1	
Part (ii) α β γ δ ε ζ η θ ι	Choose a random sample of the town and ask their opinion Choose names at random from the town's phone book A random number machine determines which house numbers should be used, and every street should have the same proportion of residents interviewed Visit everyone door to door and give them a questionnaire Assign everyone a number and select randomly Assign everyone a number and select using random numbers Ditto + "ignoring numbers that don't correspond to a resident" Assign each eligible person a number and pick numbers from a hat Put names of all residents into a hat and pick them out [NB: postal survey is biased]	B1 B1 B0B0B1 B1B0B0 B1B0B0 B1B0B1 B1B1B1 B1B1B0 B1B1B0	
Part (iii α β γ δ ε ζ η θ	One person's view should not affect another's It is without bias Results occur randomly Should be asked if they are for or against (binomial testing) It will survey a diverse group from different areas so should be representative Everyone's should be chose independently of everyone else The sample size must be large Participants are chosen at random and independently from one another [though η & θ together would get B2]	B0 B0 B0 B0 B1 B1 B1 only	
Questic α β γ δ ε ζ η	Number of bricks must always be the same Results occur randomly The chance of a brick being in one place is always the same Events must occur independently and at constant average rate They must occur independently and at constant average rate Bricks' locations must be random and independent [effectively the same] Only one brick in any one place; bricks independent [effectively the same]	B0 B0 B0 B1 only B1 only B1 only	

Penalise 2 sf instead of 3 once only. Penalise final answer ≥ 6 sf once only.

1 (i)	$\int_{0}^{1} \frac{2}{5} x^{2} dx + \int_{1}^{4} \frac{2}{5} \sqrt{x} dx$	M1	Attempt to integrate $xf(x)$, both parts added, limits
	$ = \left[\frac{2x^3}{15} \right]^1 + \left[\frac{4x^{3/2}}{15} \right]^4 = 2 $	A 1	Correct indefinite integrals
		A1 3	Correct answer
(ii)	$\int_{2}^{4} \frac{2}{5\sqrt{x}} dx = \left[\frac{4\sqrt{x}}{5} \right]^{4} = \frac{4}{5} (2 - \sqrt{2}) \text{ or } 0.4686$	M1	Attempt correct integral, limits; needs "1 –" if μ < 1
	$\begin{bmatrix} 325\sqrt{x} & \begin{bmatrix} 5 \end{bmatrix}_2 & 5 \end{bmatrix}$	A1 A1 3	Correct indefinite integral, $$ on their μ Exact aef, or in range [0.468, 0.469]
2 (i)	Po(0.5), Po(0.75) Po(0.7) and Po(0.9) $A + B \sim \text{Po}(1.6)$	M1 A1 M1	0.5, 0.75 scaled These Sum of Poissons used, can have wrong parameters
	$P(A + B \ge 5) = 0.0237$ $B(20, 0.0237)$ $0.9763^{20} + 20 \times 0.9763^{19} \times 0.0237$ $= 0.9195$	A1 M1 A1√ A1 7	0.0237 from tables or calculator Binomial (20, their <i>p</i>), soi Correct expression, their <i>p</i> Answer in range [0.919, 0.92]
(ii)	Bacteria should be independent in drugs; or sample should be random	B1 1	Any valid relevant comment, must be contextualised
3 (i)	Sample mean = 6.486 $s^2 = 0.00073$ $6.486 \pm 2.776 \times \sqrt{\frac{0.00073}{5}}$ (6.45, 6.52)	B1 B1 M1 B1 A1A1 6	0.000584 if divided by 5 Calculate sample mean $\pm ts/\sqrt{5}$, allow 1.96, s^2 etc t = 2.776 seen Each answer, cwo (6.45246, 6.5195)
(ii)	$2\pi \times \text{above}$ [= (40.5, 41.0)]	M1 1	
4 (i)	H ₀ : $p_1 = p_2$; H ₁ : $p_1 \neq p_2$, where p_i is the proportion of all solvers of puzzle i Common proportion 39/80 $s^2 = 0.4875 \times 0.5125 / 20$ $(\pm) \frac{0.6 - 0.375}{0.1117} = (\pm)2.013$ 2.013 > 1.96, or 0.022 < 0.025 Reject H. Significant evidence that there	B1 M1A1 B1 M1 A1√	Both hypotheses correctly stated, allow eg \hat{p} [= 0.4875] [= 0.01249, σ = 0.11176] (0.6 – 0.375)/s Allow 2.066 $$ from unpooled variance, p = 0.0195 Correct method and comparison with 1.96 or 0.025, allow unpooled, 1.645 from 1 tailed
	Reject H ₀ . Significant evidence that there is a difference in standard of difficulty	A1√ 8	,
(ii)	One-tail test used Smallest significance level 2.2(1)%	M1 A1 2	One-tailed test stated or implied by Φ("2.013"), OK if off-scale; allow 0.022(1)

5 (i)	Numbers of men and women should have normal dists;	B1	Context & 3 points: 2 of these, B1; 3, B2; 4, B3.
	with equal variance;	B1	[Summary data: 14.73 49.06 52.57
	distributions should be independent	B1 3	= -
(ii)	H ₀ : $\mu_M = \mu_W$; H ₁ : $\mu_M \neq \mu_W$ $3992 - \frac{221^2}{15} + 5538 - \frac{276^2}{17} [\approx 1793]$	B1 M1 A1	Both hypotheses correctly stated Attempt at this expression (see above) Either 1793 or 30
	1793/(14 + 16) = 59.766	A1	Variance estimate in range [59.7, 59.8] (or $\sqrt{}$ = 7.73)
	$(\pm) \frac{221/15 - 276/17}{\sqrt{59.766(\frac{1}{15} + \frac{1}{12})}} = (-)0.548$	M1	Standardise, allow wrong (but not missing) $1/n$
	V 115 177	A1√ A1	Correct formula, allow $s^2(\frac{1}{15} + \frac{1}{17})$ or $(\frac{s_1^2}{15} + \frac{s_2^2}{17})$, allow 14 & 16 in place of 15, 17; 0.548 or $-$ 0.548
	Critical region: $ t \ge 2.042$	B1	2.042 seen
	Do not reject H ₀ . Insufficient evidence of a difference in mean number of days	M1	Correct method and comparison type, must be t, allow 1-tail; conclusion, in context, not
		A1√10	too assertive
(iii)	Eg Samples not indep't so test invalid	B1 1	Any relevant valid comment, eg "not representative"

4734	Mark S	Scheme	June 20. Tarks cloud. Consider both end-points Consider F between end-points, can be asserted
6 (i)	$F(0) = 0, F(\pi/2) = 1$ Increasing	B1 B1 2	Consider both end-points Consider F between end-points, can be asserted
(ii)	$\sin^4(Q_1) = \frac{1}{4}$ $\sin(Q_1) = \frac{1}{\sqrt{2}}$ $Q_1 = \frac{\pi}{4}$	M1 A1 A1 3	Can be implied. Allow decimal approximations
(iii)	$G(y) = P(Y \le y) = P(T \le \sin^{-1} y)$ $= F(\sin^{-1} y)$ $= y^{4}$ $g(y) = \begin{cases} 4y^{3} & 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$	M1 A1 A1 M1 A1 5	Ignore other ranges Differentiate $G(y)$ Function and range stated, allow if range given in G
(iv)	$\int_{0}^{1} \frac{4}{1+2y} dy = \left[2 \ln(1+2y) \right]_{0}^{1}$ $= 2 \ln 3$	M1 A1 A1 3	Attempt $\int \frac{g(y)}{y^3 + 2y^4} dy$; $\int_0^1 \frac{4}{1 + 2y} dy$ Or 2.2, 2.197 or better
7 (i) α	$\Phi\left(\frac{8.084 - 8.592}{0.7534}\right) = \Phi(-0.674) = 0.25$ $\Phi(0) - \Phi(above) = 0.25$ $P(8.592 \le X \le 9.1) = \text{same by symmetry}$	M1 A1 A1 A1 4	Standardise once, allow $$ confusions, ignore sign Obtain 0.25 for one interval For a second interval, justified, eg using $\Phi(0) = 0.5$ For a third, justified, eg "by symmetry"
or β	$\frac{x - 8.592}{0.7534} = 0.674$ $x = 8.592 \pm 0.674 \times 0.7534$ $= (8.084, 9.100)$	M1A1 A1A1	[from probabilities to ranges] A1 for art 0.674
(ii)	H_0 : normal distribution fits data All E values $50/4 = 12.5$ $X^2 = \frac{4.5^2 + 9.5^2 + 1.5^2 + 3.5^2}{12.5} = 10$ 10 > 7.8794 Reject H_0 . Significant evidence that normal distribution is not a good fit.	B1 B1 M1 A1 B1 M1	Not N(8.592, 0.7534). Allow "it's normally distributed" [Yates: 8.56: A0] CV 7.8794 seen Correct method, incl. formula for χ² and comparison, allow wrong ν Conclusion, in context, not too assertive
(iv)	$8.592 \pm 2.576 \times \frac{0.7534}{\sqrt{49}}$ $(8.315, 8.869)$	M1 A1 A1 3	Allow $\sqrt{\text{errors}}$, wrong σ or z , allow 50 Correct, including $z = 2.576$ or $t_{49} = 2.680$, not 50 In range [8.31, 8.32] and in range (8.86, 8.87], even from 50, or (8.306, 8.878) from t_{49}

1	1 1		
1	$M_{X_1+X_2}(t) = (e^{\mu_1 t + \frac{1}{2}\sigma_1^2 t^2})(e^{\mu_2 t + \frac{1}{2}\sigma_2^2})$	M1	MGF of sum of independent RVs
	$= e^{(\mu_1 + \mu_2)t + \frac{1}{2}(\sigma_1^2 + \sigma_2^2)t^2} $ oe	A1	
	$X_1 + X_2 \sim \text{Normal distribution}$	A1	
	with mean $\mu_1 + \mu_2$, variance $\sigma_1^2 + \sigma_2^2$	A1A1 5 {5}	No suffices:- Allow M1A0A1A0A0
2 (i)	Non-parametric test used when the	B1 1	
2 (1)	distribution of the variable in question is		
	unknown		
(;;)		B1	
(ii)	$H_0: m_{V-A} = 0, H_1: m_{V-A} \neq 0$	ВІ	Allow $m_V = m_A$ etc
	where m_{V-A} is the median of the		
	population differences		
	Difference and rank, bottom up	M1	
	$P = 65 \ Q = 13$	A1	Allow $P > Q$ stated
	T=13	B1	
	Critical region: $T \le 13$	M1	
	13 is inside the CR so reject H ₀ and accept		
	that there is sufficient evidence at the		
	5% significance level that the		
	medians differ	A1	Penalise over-assertive conclusions once
	Use B(12, 0.5)	M1	only.
	$P(\le 4) = 0.1938 \text{ or } CR = \{0,1,2,10,11,12\}$	A1	only.
			On Anatin CD
	> 0.025, accept that there is insufficient	A1 9	Or 4 not in CR
	evidence, etc CWO	[]	
(iii)	Wilcoxon test is more powerful than the sign	B1 1	Use more information, more likely to
	test	{11}	reject NH
3 (i)	A+B		
	$= \int_{-\infty}^{0} e^{2x} e^{xt} dx + \int_{0}^{\infty} e^{-2x} e^{xt} dx$	M1	Added, correct limits
		IVII	Added, correct mints
	$= \left[\frac{1}{2+t} e^{(2+t)x} \right]_{-\infty}^{0} + \left[-\frac{1}{2-t} e^{-(2-t)x} \right]_{0}^{\infty}$	D1 D1	Compatinto anala
	$= \frac{1}{2+t} e^{-(2-t)x} + \frac{1}{2-t} e^{-(2-t)x}$	B1 B1	Correct integrals
	$\begin{vmatrix} = 1/(2+t) + 1/(2-t) \\ = 4/(4-t^2) \text{ AG} \end{vmatrix}$	_{A 1}	Allaw cancible comments about darage
		A1	Allow sensible comments about denom
	t < -2, A infinite; $t > 2$, B infinite	B1 5	of $M(t)$
(ii)	Either: $4/(4-t^2) = (1-1/t^2)^{-1}$	M1	Expand
(11)	Either: $4/(4-t^2) = (1-\frac{1}{4}t^2)^{-1}$ = $1+\frac{1}{4}t^2+$ Or: M' $(t) = 8t/(4-t^2)^2$	A1	Блрин
	Or: M' $(t) = 8t/(4-t^2)^2$		M1
	$M''(t) = 8/(4-t^2)^2 + t \times$		A1
	E(X) = 0	M1	
	$Var(X) = 2 \times \frac{1}{4} - 0 = \frac{1}{2}$	A1 4	For $M''(0) - [M'(0)]^2$ or equivalent
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	{9}	
		123	0.5 0 = 0.5

4	G(1)=1 $[a+b=1]$	M1		
(i)	G'(1) = -0.7 $[-a + 2b = -0.7]$	M1		
	Solve to obtain	M1		
	a = 0.9, b = 0.1	A1	4	
(ii)	$G''(t) = 1.8/t^3 + 0.2$ and	M1		
	$G''(1) + G'(1) - [G'(1)^2]$ used			
	$Var = 2 - 0.7 - 0.7^2 = 0.81$	A1	2	
(iii)	$[(0.9 + 0.1t^3)/t]^{10}$	M1		$[(a+bt^3)/t]^{10}$
	Method to obtain coefficient of t^{-7}	M1		For both
	$10 \times 0.9^9 \times 0.1$	A1 ft		Use of MGF. $10a^9b$
	= 0.387 to 3SF	A1	4	
		{	10}	
5	Marginal dist of X_A : 0.30 0.45 0.15 0.10	B1		
(i)	E = 0.45 + 0.3 + 0.3 = 1.05	B1		
	$Var = 0.45 + 0.6 + 0.9 - 1.05^{2}$			
	= 0.8475	B1	3	
(ii)	Consider a particular case to show	M1		Or $E(X_A)$, $E(X_B)$ and $E(X_AX_B)$
	$P(X_A \text{ and } X_B) \neq P(X_A)P(X_B)$			1.05, 1.15, 1.09;
	So X_A and X_B are not independent	A1	2	$E(X_A)E(X_B) = 1.0275$, ft on wrong
	•			$E(X_A)$
(iii)	$Cov = E(X_A X_B) - E(X_A)E(X_B)$	M1		Or from distribution of X_A - X_B
, ,	$= 1.09 - 1.15 \times 1.05 = -0.1175$	A1ft		Wrong $E(X_A)$
	$Var(X_A - X_B) = Var(X_A) + Var(X_B) -$	M1		
	$2\operatorname{Cov}(X_A, X_B)$	A1	4	
	=1.91			
(iv)	Requires $P(X_A, X_B)/P(X_A+X_B=1)$			
	= 0.13/(0.16 + 0.13)	M1		
	= 13/29 $= 0.448$	A1A1		
		A1	4	
		1	13}	
1	I and the second	1 (-,	1

6 (i)	$\int_{a}^{\infty} x e^{-(x-a)} dx = \left[-x e^{-(x-a)}\right]_{a}^{\infty} + \int_{a}^{\infty} e^{-(x-a)} dx$ $= a + \left[-e^{-(x-a)}\right]$ $= a + 1 AG$	M1I A1	3	Correct limits needed for M1; no, or incorrect, limits allowed for B1
(ii)	$E(T_1) = (a+1) + 2(a+1) - 2(a+1) - 1$	M1		
(11)	$L(I_1) = (u+1) + 2(u+1) - 2(u+1) - 1$	A1		
	-u	1		
	$E(T_2) = \frac{1}{4}(a+1+a+1) + \frac{(n-2)(a+1)}{[2(n-2)]} - 1$	M1		
	=a	A1	4	
	(So both are unbiased estimators of <i>a</i>)			
(iii)	$\sigma^2 = \operatorname{Var}(X)$	M1		
	$Var(T_1) = (1 + 4 + 1 + 1)\sigma^2 = 7\sigma^2$	A1		
	$Var(T_2) = 2\sigma^2/16 + (n-2)\sigma^2/[2(n-2)^2]$			
	$= n\sigma^2/[8(n-2)]$ oe	B1		
	This is clearly $< 7\sigma^2$, so T_2 is more efficient	A1	4	
(i=-)		<		D1 f 1
(iv)	$eg^{-1}/_{n}(X_{1}+X_{2}++X_{n})-1$	B2	2	B1 for sample mean
			{13}	
7 (i)	D denotes "The person has the disease"			
	(a) $P(D) = p$, $P(D') = 1 - p$,			
	P(+ D) = 0.98, P(+ D') = 0.08			
	$P(+) = p \times 0.98 + 0.08 \times (1-p)$	M1		
	= 0.08 + 0.9p			
	$P(D \mid +) = P(+ D)(P(D)/P(+)$	M1		Use conditional probability
	= 0.98p/(0.08 + 0.9p)	A1		Ose conditional probability
	1 \ 1 /	1		
	(b) $P(D') \times P(+ D') + P(D) \times P(- D)$	M1	_	
	=0.08-0.06p	A1	5	
(ii)	$P(++) = 0.98^2 \times p + 0.08^2 \times (1-p)$	M1		
	P(D ++) = 0.9604p/(0.954p + 0.0064)	A1	2	
(iii)	Expected number with 2 tests:			
	$24000 \times 0.0809 = a$	M1		Or: $0.08 + 0.9 \times 0.001$ oe
	Expected number with 1 test:			
	$24000 \times 0.9191 = b$	M1		×5×24000
	Expected total cost = $\pounds(10a + 5b)$	M1		+5×24000 (dep 1 st M1)
	=£129 708	A1	4	
	- 2127 700	Α1		Or £130 000
			{11}	

4736 Decision Mathematics 1

1 (i)	[43 172 536 17 314 462 220 231]			
	43 172 536 17 220 314 462 231	M1 M1 A1	First folder correct Second folder correct All correct (cao)	[3]
(ii)	536 462 314 231 220 172 43 17	B1	List sorted into decreasing order seen (cao) [Follow through from a decreasing list with no more than 1 error or omission]	
	536 462 314 231 220 172 43 17	M1 A1	First folder correct All correct	[3]
(iii)	$(5000 \div 500)^2 \times 1.3$ = 130 seconds	M1 A1	$10^2 \times 1.3$ or any equivalent calculation Correct answer, with units	[2]
			Total =	8

2 (i)	The sum of the orders must be even, (but $1+2+3+3=9$ which is odd).	B1	There must be an even number of odd nodes.	[1]
(ii) a	eg	M1	A graph with five vertices that is neither connected nor simple	
	•	A1	Vertex orders 1, 1, 2, 2, 4	[2]
b	Because it is not connected	B1	You cannot get from one part of the graph to the other part.	[1]
c	eg •	B1	A connected graph with vertex orders 1, 1, 2, 2, 4 (Need not be simple)	[1]
	•			[1]
(iii) a	There are five arcs joined to <i>A</i> . Either Ann has met (at least) three of the others or she has met two or fewer, in which case there are at least three that she	M1	A reasonable attempt (for example, identifying that there are five arcs joined to <i>A</i>)	
	has not met.	A1	A convincing explanation	
	In the first case at least three of the arcs joined to <i>A</i> are blue, in the second case at least three of the arcs joined to <i>A</i> are red.		(this could be a list of the possibilities or a well reasoned explanation)	[2]
b	If any two of Bob, Caz and Del have met	M1	A reasonable or partial attempt	
	one another then B, C and D form a blue	A 1	(using A with B , C , D)	
	triangle with A. Otherwise B, C and D form a red triangle.	A1	A convincing explanation (explaining both cases fully)	[2]
		<u> </u>	Total =	9

4736	Mark Scheme	June 20	ON Maths
3 $y \ge x$ $x + y \le 8$ $x \ge 1$	M1 M1 M1 A1	Line $y = x$ in any form Line $x + y = 8$ in any form Line $x = 1$ in any form All inequalities correct [Ignore extra inequalities that do not affect the feasible region]	Mymathso [4]
(ii) (1, 1), (1, 7), (4, 4)	M1 A1	Any two correct coordinates All three correct [Extra coordinates given \Rightarrow M1, A0]	[2]
(iii) $(1, 7) \square 23$ $(4, 4) \square 20$ At optimum, $x = 1$ and $y = 1$ Maximum value = 23	7 A1 A1	Follow through if possible Testing vertices or using a line of constant profit (may be implied) Accept (1, 7) identified 23 identified	[3]
(iv) $2\times 1 + k\times 7 \ge 2\times 4 + k\times 4$ $\Box k \ge 2$	M1 A1	$2 + 7k$ or implied, or using line of gradient $-\frac{2}{k}$ Greater than or equal to 2 (cao) $[k > 2 \Rightarrow M1, A0]$	[2]
		Total:	= 11

4 (i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 M1 A1	Both 6 and 5 shown at <i>D</i> [5 may appear as perm label only] 14, 13.5 and 10.5 shown at <i>G</i> No extra temporary labels All temporary labels correct [condone perm values only appearing as perm labels] [Dep on both M marks] All permanent labels correct [may omit <i>G</i> , but if given it must be correct] Order of labelling correct [may omit <i>G</i> but if given it must be correct]	
	Route = $A - B - D - F - H$	B1	cao	
	Length = 9.5 miles	B1	cao	[7]
(ii)	Route Inspection problem	B1	Accept Chinese Postman	[1]
(iii)	Odd nodes: A, D, E and H	B1	Identifying or using <i>A</i> , <i>D</i> , <i>E</i> , <i>H</i>	
	$AD = 5 \qquad AE = 8 \qquad AH = 9.5$	M1	Attempting at least one pairing	
	$EH = \underline{5} \qquad DH = \underline{4.5} DE = \underline{3.5}$	A1	At least one correct pairing or correct	
	10 12.5 13.0		total	
	Repeat AD (A - B - D) and EH (E - F - H)	M1	Adding their 10 to 67.5	
	Length = $67.5 + 10$			
	= 77.5 miles	A1	77.5 (cao)	[5]
(iv)	Repeat arcs EF and FD	B1	cao [NOT DE or D-F-E]	
	3.5 + 67.5 = 71 miles	B1	cao	[2]
(v)	A-B-C-G-F-D	B1	Showing route as far as <i>D</i> and then	
	then method stalls		explaining the problem	
	E and H are missed out			[1]
(vi)	C-B-A-D-F-E-H-G-C	M1	[If final C is missing \Rightarrow M1, A0]	
	27.5	A1	[A diagram needs arrows for A1]	[2]
	37.5 miles	B1	37.5 (cao)	[3]
(vii)	E 🖍			
	B D F H	M1	A spanning tree on reduced network (may show <i>AB</i> , <i>AD</i>)	
		A1	Correct minimum spanning tree marked, with no extra arcs	
	C G	B1	630	
	Nodes: B C D F E H G	B1	cao cao	
	Weight = 16 miles			
	[Two shortest area from A are AP and AD]	3.61		
	[Two shortest arcs from A are AB and AD] $2+6+16$	M1	8 + their 16 (or implied)	
	Lower bound = 24 miles	A1	cao	[[6]
	Lower bound – 24 miles			[6]
	•		Total =	25

				عر عر
5 (i)	$15x+15y+30z \le 9000$ [divide through by 15 to get $x+y+2z \le 600$ as given]	B1	$15x + 15y + 30z \le 9000$	
	Stamping out: $5x+8y+10z \le 3600$ Fixing pin: $50x+50y+50z \le 25000$	B1	$5x + 8y + 10z \le 3600$	
	$\Box x + y + z \le 500$ Checking: $100x + 50y + 20z \le 10000$	B1	$x + y + z \le 500$	
	$\Box 10x + 5y + 2z \le 1000$	B1	$10x + 5y + 2z \le 1000$	[4]
(ii)	x, y and z are non-negative	B1	$x \ge 0, y \ge 0 \text{ and } z \ge 0$	[1]
(iii)	(P =) 4x + 3y + z	B1	cao	[1]
(iv)	P x y z s t u v RHS 1 -4 -3 -1 0 0 0 0 0 0 1 1 2 1 0 0 0 600 0 5 8 10 0 1 0 0 3600 0 1 1 1 0 0 1 0 500 0 10 5 2 0 0 0 1 1000		Follow through if reasonable -4-3-1 in objective row Correct use of slack variables 1 1 2 and 600 correct All constraint rows correct Accept variations in order of rows and columns	[4]
(v)	Pivot on the 10 in the <i>x</i> -column 1 0 -1 -0.2 0 0 0 0 0.4 400 0 0 0.5 1.8 1 0 0 -0.1 500 0 0 5.5 9 0 1 0 -0.5 3100 0 0 0.5 0.8 0 0 1 -0.1 400 0 1 0.5 0.2 0 0 0 0 0.1 100	B1 M1 A1	Correct choice of pivot from <i>x</i> - column [Follow through their tableau and valid pivot if possible: no negative values in RHS column and <i>P</i> value has not decreased] Pivot row correct Other rows correct	[3]
	Pivot on 0.5 in the last row of y-column 1	B1 M1 A1	Correct choice of pivot from y-column [Follow through their tableau and valid pivot if possible] Pivot row correct Other rows correct	[3]
	x = 0, y = 200, z = 0, P = 600 Make 20 000 metallic badges (and no laminated badges or plastic badges)	B1	Interpretation of their x, y and z values in context (may imply zero entries)	
	To give a profit of £600	B1	Interpretation of their <i>P</i> value in context	
	6000 seconds (100 min) of printing time not used, 2000 seconds (33 min 20 sec) of stamping out time not used, 15000 seconds (250 min) of fixing pin time not used. All the checking time is used	В1	Interpretation of their slack variable values	[3]
			Total =	19

4737 Decision Mathematics 2

1(a) (i)	$A \longrightarrow F$ $B \longrightarrow G$	B1	A correct bipartite graph	
	C H			
	D J			
	E K			[1]
(ii)	$A \bullet F$			
	$B \bullet G$	B1	A second bipartite graph showing the incomplete matching correctly	
	$C \bullet H$			
	$D \bullet J$			
	$E \bullet K$			[1]
(iii)	E = F - A = H - D = K	B1	This path in any reasonable form	
	Fiona = Egg and tomato $F = E$ Gwen = Beef and horseradish Helen = Avocado and bacon $H = A$ Jack = Chicken and stuffing $J = C$ Mr King = Duck and plum sauce $K = D$	B1	This complete matching	[2]
(iv)	Interchange Gwen and Jack $F = E G = C H = A J = B K = D$	B1	This complete matching	[1]

June 20 Alhscloud Con

(b)	Reduce rows			
	$oxed{F} oxed{G} oxed{H} oxed{J} oxed{K}$			
	L 7 7 7 7 0			
	M 2 6 4 2 0	M1	Substantially correct attempt to	
	N 8 8 8 6 0		reduce rows	
	O 1 3 2 1 0			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	Reduce columns			
	$F \mid G \mid H \mid J \mid K$			
	L 6 4 5 6 0	M1	Substantially correct attempt to	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		reduce columns	
	N 7 5 6 5 0			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A1	cao	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
				[3]
	Cross out 0's using two (minimum no. of) lines			
	F G H J K			
	L 6 4 5 6 0			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	O O O O O			
	P 5 6 5 4 0			
	Augment by 1	M1	Substantially correct attement at	
	$F \mid G \mid H \mid J \mid K$	IVII	Substantially correct attempt at	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		augmenting	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A1	Augmenting correctly	[2]
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	711	Trugillenting correctly	[*]
	Cross out 0's using three (minimum no. of)			
	lines			
	F G H J K			
	L 5 3 4 5 0			
	M 0 2 1 0 0			
	N 6 4 5 4 0			
	0 0 0 0 1			
	P 4 5 4 3 0			
	Augment by 3			
	$F \mid G \mid H \mid J \mid K$			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	Substantially correct attempt at	
	M 0 2 1 0 3		augmenting (by more than 1 in a	
	N 3 1 2 1 0		single step)	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A1	Augmenting correctly	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	Lemon = Gwen			
	Mandarin = Fiona	D1	Comment all and di	
	Nectarine = Mr King	B1	Correct allocation	
	Orange = Helen			
	Peach = Jack			[27]
			75 4 3	[3]
			Total =	13

	_					_	Т	- C
2 (i)	Stage	State	Action	Working	Suboptimal maxima	B1	Structure of table correct	
		0	0	7	maxima 7	BI	Structure of table correct	
	2	1	0	6	6	M1	Stage and state values correct	
		2	0	8	8	1121	Singe and since turnes correct	
		0	0	5 +7 = 12		A1	Action values correct	[3]
			1	6 + 6 = 12	12			
			0	4 +7 = 11		B1	Working backwards from stage 2	
	1	1	1	5 + 6 = 11	1.4		7, 6, 8 correct in suboptimal	
			0	6 + 8 = 14 10 + 7 = 17	14 17	M1	maxima column for stage 2	
		2	1	9+6=15	1 /	M1	Working column substantially correct for stage 1	
		_	2	6 + 8 = 14			Sums correct for stage 1	[3]
			0	8 + 12 = 20 $9 + 14 = 23$		B1	Suboptima maxima values correct	[ی]
	0	0	1				for stage 1	
			2 7 + 17 = 24		24	M1	Working column substantially	
							correct for stage 0	
						A1	Sums correct for stage 0	503
	Maximum route = $(0;0)$ - $(1;2)$ - $(2;0)$ - $(3;0)$ Weight = 24						Correct route from (0; 0) to (3; 0)	[3]
							24 cao	
	Weight	<i>2</i> ⊣						[2]
(ii)		8 12	D((5) - 17	17			
			\leftarrow		1 2 7	B1	Assigning A to N appropriately	
	A(8) $E(6)$ $L(7)$							
		$\frac{F}{3(9)}$	G(5)	M	(6)	M1		
							Substantially correct forward pass	
	0 0 9 10 16 18 24 24						Forward pass correct	
	C(7) $I(10)$ $I(9)$ $H(6)$ $N(8)$						Substantially correct backward pass	
	7 7 K(6) 15 16						Backward pass correct	
		7 7	Λ	(6)	0 16	A1	24 (cao)	
	Minimum completion time = 24						C, I, L (cao)	
	Critical					B1	-,,	[7]
(iii)				naximum pa	ath	M1	Same path is found in both	
(,				rm a continu		A1	Recognition of why the solutions	
				gest path			are the same, in general	[2]
				- •				
				·			Total =	20

Total = 19

4737	Mark Scheme		June 20. Sum of points is 10 So sum of scores is zero A specific example earns M1 only	Math
3 (i)	For each pairing, the total of the points is 10. Subtracting 5 from each makes the total 0.	M1 A1	Sum of points is 10 So sum of scores is zero	
	Eg 3 points and 7 points \Rightarrow scores of -2 and +2		A specific example earns M1 only	[2]
(ii)	W scores -1 P has 6 points and W has 4 points	B1 B1	-1 6 and 4	[2]
(iii)	W is dominated by $Y-1 < 1, -3 < -2 and 1 < 2$	B1 B1	Y These three comparisons in any form	[2]
(iv)	Rovers	M1	Determining row minima and column maxima, or equivalent	
	Play-safe for Rovers is <i>P</i> Play-safes for Collies is <i>Y</i>	A1 A1	P Y	[3]
(v)	2p - 4(1-p) = 6p - 4 Y gives $1 - 2p$	B1	6 <i>p</i> - 4 in simplified form	
	Z gives $3p$	B1	Both $1 - 2p$ and $3p$ in any form	[2]
(vi)		B1	Their lines drawn correctly on a reasonable scale	
	$6p - 4 = 1 - 2p \Rightarrow p = \frac{5}{8}$	M1 A1	Solving the correct pair of equations or using graph correctly $\frac{5}{8}$, 0.625, cao	[3]
(vii)	Add 4 throughout matrix to make all values non-negative	B1	'Add 4', or new matrix written out or equivalent	
	On this augmented matrix, if Collies play X Rovers expect $6p_1 + 5p_2$; if Collies play Y Rovers expect $3p_1 + p_2 + 5p_3$; and if Collies play Z Rovers expect $7p_1 + 3p_2 + 4p_3$	B1	Relating to columns <i>X</i> , <i>Y</i> and <i>Z</i> respectively. Note: expressions are given in the question.	
	We want to maximise M where M only differs by a constant from m and, for each value of p , m is the minimum expected value.	B1	For each value of <i>p</i> we look at the minimum output, then we maximise these minima.	[3]
(viii)	$p_3 = \frac{3}{8}$	B1	cao	
	$M = -\frac{1}{4}$	B1	cao	[2]

4737	Mark Scheme		June 20	Math
4 (i)	8+0+6+5+4	M1	June 20. 8+0+6+5+4 or 23 23 with units	T
	= 23 gallons per minute	A 1	23 with units	[2]
(ii)	At most 6 gallons per minute can enter A so there cannot be 7 gallons per minute leaving it	B1	Maximum into $A = 6$	
	At most 7 gallons per minute can leave <i>F</i> so there cannot be 10 gallons per minute entering it.	B1	Maximum out of $F = 7$	[2]
(iii)	A diagram showing a flow with 12 through <i>E</i> Flow is feasible (upper capacities not	M1 M1	Assume that blanks mean 0	
	exceeded) Nothing flows through <i>A</i> and <i>D</i>	A 1		
	Maximum flow through $E = 12$ gallons per minute	B1	12	[4]
(iv) a	If flows through A but not D its route must be $S-A-C-E$, but the flow through E is already a maximum	B1	A correct explanation	[1]
b	S - (B) - C - D - F - T	M1	Follow through their part (iii)	
	1 gallon per minute	A1	1	[2]
(v)	Flow = $12 + 1 = 13$ gallons per minute			
	Cut through ET and FT or $\{S,A,B,C,D,E,F\}$, $\{T\}$ = 13 gallons per minute	B1	Identifying this cut in any way	
	Every cut forms a restriction Every cut ≥ every flow □ min cut ≥ max flow	M1 A1	Use of max flow – min cut theorem min cut ≥ max flow	
	This cut = this flow so must be min cut and max flow	B1	This cut = this flow (or having shown that both are 13)	[4]
(vi)	3 gallons per minute Must flow 6 along <i>ET</i> and 7 along <i>FT</i> .	B1 B1	3	
	Can send 4 into <i>F</i> from <i>D</i> so only need to send 9 through <i>E</i>	B1	A correct explanation	[3]
(vii)	A diagram showing a flow of 13 without using BE	M1	May imply directions and assume that blanks mean 0	[2]
	Flow is feasible and only sends 9 through <i>E</i>	A1		[2]
			Total =	20

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) June 2009 Examination Series

Unit Threshold Marks

7892		Maximum Mark	Α	В	С	D	E	U
4721	Raw	72	58	51	44	38	32	0
4/21	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	49	42	35	28	0
4122	UMS	100	80	70	60	50	40	0
4723	Raw	72	53	46	39	33	27	0
4723	UMS	100	80	70	60	50	40	0
4724	Raw	72	53	46	39	33	27	0
4724	UMS	100	80	70	60	50	40	0
4725	Raw	72	49	43	37	32	27	0
4725	UMS	100	80	70	60	50	40	0
4726	Raw	72	53	46	40	34	28	0
4/20	UMS	100	80	70	60	50	40	0
4727	Raw	72	55	49	43	38	33	0
4/2/	UMS	100	80	70	60	50	40	0
4728	Raw	72	62	52	42	33	24	0
4720	UMS	100	80	70	60	50	40	0
4729	Raw	72	57	48	39	31	23	0
4/29	UMS	100	80	70	60	50	40	0
4730	Raw	72	61	51	41	32	23	0
4/30	UMS	100	80	70	60	50	40	0
4731	Raw	72	55	46	38	30	22	0
4/31	UMS	100	80	70	60	50	40	0
4732	Raw	72	54	47	40	33	27	0
4/32	UMS	100	80	70	60	50	40	0
4733	Raw	72	57	49	41	33	26	0
4/33	UMS	100	80	70	60	50	40	0
4734	Raw	72	55	48	41	34	27	0
4/34	UMS	100	80	70	60	50	40	0
4735	Raw	72	52	45	38	32	26	0
4/30	UMS	100	80	70	60	50	40	0
4736	Raw	72	57	50	44	38	32	0
4/30	UMS	100	80	70	60	50	40	0
4737	Raw	72	52	46	40	34	29	0
4131	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	В	С	D	E	U	Total Number of Candidates
3890	37.64	54.75	68.85	80.19	88.46	100	18954
3892	58.92	74.42	85.06	91.87	96.04	100	2560
7890	47.57	68.42	83.78	93.17	98.15	100	11794
7892	60.58	80.66	90.76	95.89	98.72	100	2006

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums_results.html

Statistics are correct at the time of publication.

List of abbreviations

Below is a list of commonly used mark scheme abbreviations. The list is not exhaustive.

AEF Any equivalent form of answer or result is equally acceptable AG Answer given (working leading to the result must be valid)

CAO Correct answer only

ISW Ignore subsequent working

MR Misread
SR Special ruling
SC Special case

ART Allow rounding or truncating

CWO Correct working only SOI Seen or implied

WWW Without wrong working

Ft or $\sqrt{}$ Follow through (allow the A or B mark for work correctly following on from

previous incorrect result.)

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 - 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

